PS转炉铜吹炼模拟
Converting Simulation of the PS Copper Converter
DOI: 10.12677/MEng.2016.34018, PDF, HTML, XML, 下载: 2,028  浏览: 4,572 
作者: 孟 飞, 张建坤, 杨光彩, 孔祥同, 曹战民:北京科技大学冶金与生态工程学院,北京
关键词: PS转炉热力学模型有效反应区FactSage软件PS Converter Copper Thermodynamic Model Effective Reaction Zone FactSage Software
摘要: 随着计算机技术的不断发展,在PS转炉铜吹炼生产中,各种转炉模型已经可以模拟转炉炼铜的生产规律,各类热力学模型已经具有相当的规模。本文基于有效反应区模型来模拟炉内冶炼过程,划分了有效反应区,假设冰铜、炉渣、气体处于热力学平衡和质量守恒,利用FactSage软件建模和编程将热力学数据库结合起来,实现对整个PS转炉铜吹炼过程的模拟。并将模拟结果与实际生产数据对比,比较、分析和优化改进模型,进而开发适应性强、性能可靠、模拟相似度高的铜吹炼热力学模型。此模型对生产消耗、生产效率和产品质量等方面有着重要的意义,同时也为优化转炉操作提供了新的思路。
Abstract: With the development of computer technology, all kinds of copper smelting converter model are able to simulate the rule of converter production, and all kinds of thermodynamic model expand their scale in the production of the PS copper converter blowing. Based on the effective reaction zone model for simulating the furnace smelting process, the model divides the effective reaction zone. Assuming that matter, slag and gas are in thermodynamics equilibrium and conservation of mass; the thermodynamic database is combined with modeling and programming in FactSage software to simulate the process of PS converter. The simulation results with the actual production data are compared; the improved model is analyzed and optimized; and then the thermodynamic model of copper blowing with high adaptability, reliable performance and high similarity is developed. This model of production consumption has important significance in production effi-ciency and product quality, and at the same time provides a new thought for the optimization of converter operation.
文章引用:孟飞, 张建坤, 杨光彩, 孔祥同, 曹战民. PS转炉铜吹炼模拟[J]. 冶金工程, 2016, 3(4): 121-131. http://dx.doi.org/10.12677/MEng.2016.34018

参考文献

[1] Goto, S. (1974) Equilibrium Calculations between Matte, Slag and Gaseous Phases in Copper Smelting. In: Copper Metallur-gy-Practice and Theory, IMM, London, 23-34.
[2] Tan, P. and Neuschutz, D. (2001) A Thermodynamic Model of Nickel Smelting and Direct High-Grade Nickel Matte Development and Validation. Metallurgical and Materials Transactions B, 32B, 1-11.
[3] Chen, C., Zhou, T., Zhang, J., Wei, S., Lu, X., Bai, M. and Jiang, M. (1999) Thermodynamic Study on Process in Copper Converters (The Slag-Making Stage). Journal of University of Science and Technology Beijing, 6, 187-192.
[4] Kyllo, A.K. and Richards, G.G. (1991) A Mathematical Model of the Nickel Converter. Part I. Model Development and Verification. Metallurgical and Materials Transactions B, 22B, 153-161.
http://dx.doi.org/10.1007/BF02652480
[5] Kyllo, A.K. and Richards, G.G. (1993) A Mathematical Model of the Nickel Converter. Part II. Application and Analysis of Converter. Metallurgical and Materials Transactions B, 23B, 573-582.
[6] Morland, P.T., Mattew, S.P. and Hayes, P.C. (1991) The Kinetics of Exchange between SO2/CO/CO2 Gas Mixtures and Copper Sulfide Melts at 1523 K. Metallurgical and Materials Transactions B, 22B, 211-217.
http://dx.doi.org/10.1007/BF02652485
[7] Kyllo, A.K. and Richards, G.G. (1998) A Kinetic Model of the P-S Converter. Part I. Model Formulation and Validation. Metallurgical and Materials Transactions B, 29B, 239-249.
http://dx.doi.org/10.1007/s11663-998-0027-9
[8] Kyllo, A.K. and Richards, G.G. (1998) A Kinetic Model of the P-S Converter. Part II. Model Application and Discussion. Metallurgical and Materials Transactions B, 29B, 251-259.
http://dx.doi.org/10.1007/s11663-998-0028-8
[9] Ende, M.A., Kim, Y.M., Cho, M.K., et al. (2011) A Kinetic Model for the Ruhrstahl Heraeus (RH) Degassing Process. Metallurgical and Materials Transactions B, 42, 477-489.
http://dx.doi.org/10.1007/s11663-011-9495-4
[10] Degtrov, S.A. and Pelton, A.D. (1999) A Thermodynamic Data Base for Copper Smelting and Converting. Metallurgical and Materials Transactions B, 30B, 661-669.
http://dx.doi.org/10.1007/s11663-999-0027-4