心脏转录因子NKX2.5与先天性心脏病的关系
The Relationship between Cardiac Transcriptional Factor NKX2.5 and Congenital Heart Disease
DOI: 10.12677/ACRVM.2016.44004, PDF, HTML, XML, 下载: 2,099  浏览: 6,812  国家自然科学基金支持
作者: 欧阳平*:广东医科大学,东莞科研中心,广东医科大学广东省医学分子诊断重点实验室,广东 东莞 ;王 森:广东医科大学基础医学院组织学与胚胎学教研室,广东 东莞
关键词: 先天性心脏病NKX2.5基因突变Congenital Heart Defects NKX2.5 Gene Mutation
摘要: 先天性心脏病(congenital heart disease, CHD)是胎儿时期心脏血管发育异常所致的心血管畸形,也是最常见的新生儿畸形之一,其发病率约占出生活产婴儿的约1%。先天性心脏病也是儿童死亡的主要原因之一。已有的研究发现遗传因素在CHD发病中具有很重要的作用。NKX2.5是一个重要的心脏转录因子,在心脏的早期发育和成体心脏的维护中均起很重要的作用。已有较多研究报道NKX2.5基因突变导致房间隔缺损(atrial septal defect, ASD)、室间隔缺损(ventricular septal defect, VSD)和房室传导阻滞(atrioventricular block, AVB)等CHD表型产生。突变的NKX2.5的转录活性、DNA结合活性和核定位等功能发生改变,并影响NKX2.5下游基因的表达。我们将主要论述NKX2.5和CHD的关系,讨论NKX2.5突变引起CHD发生的可能机制。
Abstract: Congenital heart defects (CHDs) are cardiovascular malformations formed during fetal period. It’s the commonest malformation for the newborns. The morbidity is about 1% in all the live birth infants. CHD is also a common disease that leads to children death. Previous studies have confirmed that genetics play an important role in the development of CHD. NKX2.5 is a cardiac transcriptional factor and plays a pivotal role in heart early development and maintenance of adult hearts. Plenty of studies have reported that NKX2.5 mutations lead to atrial septal defect, ventricular septal defect and atrioventricular block. Functional analysis identified that the transcriptional activity, DNA-binding activity and nuclear localization of the NKX2.5 mutant proteins have been changed. The expression of the downstream genes regulated by NKX2.5 can also be changed. Here, we will focus on the relationship of NKX2.5 and CHD, discussing partial molecular mechanisms of CHD.
文章引用:欧阳平, 王森, 刘浩, 林梦飞, 李涛. 心脏转录因子NKX2.5与先天性心脏病的关系[J]. 亚洲心脑血管病例研究, 2016, 4(4): 21-26. http://dx.doi.org/10.12677/ACRVM.2016.44004

参考文献

[1] Torres-Cosme, J.L., Rolón-Porras, C., Aguinaga-Ríos, M., et al. (2016) Mortality from Congenital Heart Disease in Mexico: A Problem on the Rise. PloS ONE, 11, e0150422.
http://dx.doi.org/10.1371/journal.pone.0150422
[2] Chung, I.M. and Rajakumar, G. (2016) Genetics of Congenital Heart Defects: The NKX2-5 Gene, a Key Player. Genes (Basel), 7, e6.
http://dx.doi.org/10.3390/genes7020006
[3] Ouyang, P., Zhang, H., Fan, Z., et al. (2016) A R/K-Rich Motif in the C-Terminal of the Homeodomain Is Required for Complete Translocating of NKX2.5 Protein into Nucleus. Gene, 592, 276-280.
http://dx.doi.org/10.1016/j.gene.2016.07.022
[4] Ouyang, P., Saarel, E., Bai, Y., et al. (2011) A de Novo Mutation in NKX2.5 Associated with Atrial Septal Defects, Ventricular Noncompaction, Syncope and Sudden Death. Clinica Chimica Acta, 412, 170-175.
http://dx.doi.org/10.1016/j.cca.2010.09.035
[5] Akazawa, H. and Komuro, I. (2005) Cardiac Transcription Factor Csx/Nkx2-5: Its Role in Cardiac Development and Diseases. Pharmacology & Therapeutics, 107, 252-268.
http://dx.doi.org/10.1016/j.pharmthera.2005.03.005
[6] Baban, A., Postma, A.V., Marini, M., et al. (2014) Identification of TBX5 Mutations in a Series of 94 Patients with Tetralogy of Fallot. American Journal of Medical Genetics Part A, 164A, 3100-3107.
http://dx.doi.org/10.1002/ajmg.a.36783
[7] Hirayama-Yamada, K., Kamisago, M., Akimoto, K., et al. (2005) Phenotypes with GATA4 or NKX2.5 Mutations in Familial Atrial Septal Defect. American Journal of Medical Genetics Part A, 135, 47-52.
http://dx.doi.org/10.1002/ajmg.a.30684
[8] McCulley, D.J. and Black, B.L. (2012) Transcription Factor Pathways and Congenital Heart Disease. Current Topics in Developmental Biology, 100, 253-277.
http://dx.doi.org/10.1016/B978-0-12-387786-4.00008-7
[9] Akazawa, H. (2015) Mechanisms of Cardiovascular Homeostasis and Pathophysiology—From Gene Expression, Signal Transduction to Cellular Communication. Circulation Journal, 79, 2529-2536.
http://dx.doi.org/10.1253/circj.CJ-15-0818
[10] 吴秀山. 心脏发育概论[M]. 北京: 科学出版社, 2006: 322-323.
[11] Bhat, V., Belaval, V., Gadabanahalli, K., Raj, V. and Shah, S. (2016) Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach part III: Cyanotic Heart Diseases and Complex Congenital Anomalies. Journal of Clinical and Diagnostic Research, 10, TE01-TE10.
http://dx.doi.org/10.7860/jcdr/2016/21443.8210
[12] Talwar, S., Kumar, M.V., Sreenivas, V., et al. (2016) Factors Determining Outcomes in Grown Up Patients Operated for Congenital Heart Diseases. Annals of Pediatric Cardiology, 9, 222-228.
http://dx.doi.org/10.4103/0974-2069.189113
[13] Ouyang, P., Liu, Y., Huang, Z., et al. (2015) Readthrough on Transcription Factor NKX2.5 Premature Stop Codon by tRNA Suppressors. Hereditas, 37, 367-373.
[14] Schott, J.J., Benson, D.W., Basson, C.T., et al. (1998) Congenital Heart Disease Caused by Mutations in the Transcription Factor NKX2-5. Science, 281, 108-111.
http://dx.doi.org/10.1126/science.281.5373.108
[15] Draus, J.M., Hauck, M.A., Goetsch, M., et al. (2009) Investigation of Somatic NKX2-5 Mutations in Congenital Heart Disease. Journal of Medical Genetics, 46, 115-122.
http://dx.doi.org/10.1136/jmg.2008.060277
[16] Harvey, R.P. (1996) NK-2 Homeobox Genes and Heart Development. Developmental Biology, 178, 203-216.
http://dx.doi.org/10.1006/dbio.1996.0212
[17] Zhou, M., Liao, Y. and Tu, X. (2015) The Role of Transcription Factors in Atrial Fibrillation. Journal of Thoracic Disease, 7, 152-158.
[18] Ellesoe, S.G., Johansen, M.M., Bjerre, J.V., et al. (2016) Familial Atrial Septal Defect and Sudden Cardiac Death: Identification of a Novel NKX2-5 Mutation and a Review of the Literature. Congenital Heart Disease, 11, 283-290.
http://dx.doi.org/10.1111/chd.12317
[19] Tong, Y.F. (2016) Mutations of NKX2.5 and GATA4 Genes in the Development of Congenital Heart Disease. Gene, 588, 86-94.
http://dx.doi.org/10.1016/j.gene.2016.04.061
[20] Pabst, S., Wollnik, B., Rohmann, E., et al. (2008) A Novel Stop Mutation Truncating Critical Regions of the Cardiac Transcription Factor NKX2-5 in a Large Family with Autosomal-Dominant Inherited Congenital Heart Disease. Clinical Research in Cardiology, 97, 39-42.
http://dx.doi.org/10.1007/s00392-007-0574-0
[21] Gutierrez-Roelens, I., Roy, L.D., Ovaert, C., et al. (2006) A Novel CSX/NKX2-5 Mutation Causes Autosomal-Domi- nant AV Block: Are Atrial Fibrillation and Syncopes Part of the Phenotype? European Journal of Human Genetics, 14, 1313-1316.
http://dx.doi.org/10.1038/sj.ejhg.5201702
[22] Dentice, M., Cordeddu, V., Rosica, A., et al. (2006) Missense Mutation in the Transcription Factor NKX2-5: A Novel Molecular Event in the Pathogenesis of Thyroid Dysgenesis. Journal of Clinical Endocrinology & Metabolism, 91, 1428-1433.
http://dx.doi.org/10.1210/jc.2005-1350
[23] Lyons, I., Parsons, L.M., Hartley, L., et al. (1995) Myogenic and Morphogenetic Defects in the Heart Tubes of Murine Embryos Lacking the Homeo Box Gene NKX2-5. Genes & Development, 9, 1654-1666.
http://dx.doi.org/10.1101/gad.9.13.1654
[24] Pashmforoush, M., Lu, J.T., Chen, H., et al. (2004) NKX2-5 Pathways and Congenital Heart Disease: Loss of Ventricular Myocyte Lineage Specification Leads to Progressive Cardiomyopathy and Complete Heart Block. Cell, 117, 373- 386.
http://dx.doi.org/10.1016/S0092-8674(04)00405-2
[25] Kasahara, H., Ueyama, T., Wakimoto, H., et al. (2003) NKX2.5 Homeoprotein Regulates Expression of Gap Junction Protein Connexin 43 and Sarcomere Organization in Postnatal Cardiomyocytes. Journal of Molecular and Cellular Cardiology, 35, 243-256.
http://dx.doi.org/10.1016/S0022-2828(03)00002-6
[26] Toko, H., Zhu, W., Takimoto, E., et al. (2002) Csx/NKX2-5 Is Required for Homeostasis and Survival of Cardiac Myocytes in the Adult Heart. Journal of Biological Chemistry, 277, 24735-24743.
http://dx.doi.org/10.1074/jbc.M107669200
[27] D’Amico, M.A., Ghinassi, B., Izzicupo, P., et al. (2016) IL-6 Activates PI3K and PKCζ Signaling and Determines Cardiac Differentiation in Rat Embryonic H9c2 Cells. Journal of Cellular Physiology, 231, 576-586.
http://dx.doi.org/10.1002/jcp.25101
[28] Chen, M., Bi, L.-L., Wang, Z.-Q., et al. (2013) Time-Dependent Regulation of Neuregulin-1β/ErbB/ERK Pathways in Cardiac Differentiation of Mouse Embryonic Stem Cells. Molecular and Cellular Biochemistry, 380, 67-72.
http://dx.doi.org/10.1007/s11010-013-1658-y
[29] Shiojima, I., Komuro, I., Oka, T., et al. (1999) Context-Dependent Transcriptional Cooperation Mediated by Cardiac Transcription Factors Csx/NKX-2.5 and GATA-4. Journal of Biological Chemistry, 274, 8231-8239.
http://dx.doi.org/10.1074/jbc.274.12.8231
[30] Mauritz, C., Schwanke, K., Reppel, M., et al. (2008) Generation of Functional Murine Cardiac Myocytes from Induced Pluripotent Stem Cells. Circulation, 118, 507-517.
http://dx.doi.org/10.1161/CIRCULATIONAHA.108.778795