气相中Th活化C2H4的自旋禁阻反应机理
Spin Forbidden Reaction Mechanism of Th Activation of C2H4 in Gas Phase
DOI: 10.12677/JAPC.2016.54013, PDF, HTML, XML, 下载: 1,871  浏览: 4,118  国家自然科学基金支持
作者: 王翠兰:积石山县积石中学,甘肃 积石山
关键词: Th活化C2H4密度泛函理论(DFT)势能面最低能量交叉点(MECP)Th Actives C2H4 Density Functional Theory (DFT) Potential Energy Surfaces Minimum Energy Crossing Point (MECP)
摘要: 用密度泛函理论中的UB3LYP方法,研究了单重态和三重态势能面自旋禁阻反应Th(6d27S2) + C2H4→ThH3-CCH的微观机理。找到了两条反应通道,对其中涉及的两态反应(TSR)进行了分析。进而运用Hammond假设和Yoshizawa等的内禀坐标单点垂直激发计算的方法找出了一系列势能面交叉点[crossing points (CPs)],并作了相应的讨论。通过计算,讨论了势能面交叉和可能的自旋翻转过程。用Harvey等的方法优化出最低能量交叉(MECP),进一步讨论了Th与C2H4的反应中不同势能面之间的“系间窜越”(ISC)的可能性。最后,对前线分子轨道MECP2做了简单的讨论,这些理论结果可以作为进一步理论研究和实验的指导。
Abstract: Using UB3LYP method in density functional theory, the micro mechanism of the singlet and triplet potential energy surfaces of the three spin forbidden reactions Th(6d27S2) + C2H4→ThH3-CCH was investigated. Two reaction channels were found, and the two state reaction (TSR) was analyzed. Then we used the method of single point vertical excitation calculation of intrinsic coordinates Hammond and Yoshizawa’s hypothesis, found a series of potential energy surface crossing point of [crossing points (CPs)], and made the corresponding discussion. By calculation, the crossover of potential energy surface and the spin flip process are discussed. Using Harvey and other methods to optimize the minimum energy crossover (MECP), the possibility of the “inter system channeling” (ISC) between different potential energy surfaces in the reaction of Th and C2H4 is further discussed. In the end, we make a brief discussion on the frontier molecular orbital MECP2, which can be used as a guide for further theoretical research and experiment.
文章引用:王翠兰. 气相中Th活化C2H4的自旋禁阻反应机理[J]. 物理化学进展, 2016, 5(4): 112-121. http://dx.doi.org/10.12677/JAPC.2016.54013

参考文献

[1] Schröder, D., Shaik, S. and Schwarz, H. (2000) Two-State Reactivity as a New Concept in Organometallic Chemistry. Accounts of Chemical Research, 33, 139-145.
http://dx.doi.org/10.1021/ar990028j
[2] Ogliaro, F., Harris, N., Cohen, S., Filatov, M., de Visser, S.P. and Shaik, S. (2000) A Model “Rebound” Mechanism of Hydroxylation by Cy-tochrome P450: Stepwise and Effectively Concerted Pathways, and Their Reactivity Patterns. Journal of the American Chemical Society, 122, 8977-8989.
http://dx.doi.org/10.1021/ja991878x
[3] Olson, D.E. and Du Bois, J. (2008) Catalytic C-H Amination for the Preparation of Substituted 1,2-Diamines. Journal of the American Chemical Society, 130, 11248-11249.
http://dx.doi.org/10.1021/ja803344v
[4] Andrews, L. and Cho, H.G. (2006) Matrix Preparation and Spectroscopic and Theoretical Investigations of Simple Methylidene and Methylidyne Complexes of Group 4-6 Transition Metals. Organometallics, 25, 4040-4053.
http://dx.doi.org/10.1021/om060318l
[5] Davies, H.M.L. and Beckwith, R.E.J. (2003) Catalytic Enantioselective C-H Activation by Means of Metal-Carbenoid- Induced C-H Insertion. Chemical Reviews, 103, 2861-2904.
http://dx.doi.org/10.1021/cr0200217
[6] Proctor, D.L. and Davis, H.F. (2008) Vibrational vs. Translational Energy in Promoting a Prototype Metal-Hydrocar- bon Insertion Reaction. Proceedings of the National Academy of Sciences of the United States of America, 105, 12673- 12677.
http://dx.doi.org/10.1073/pnas.0801170105
[7] Lee, Y.K., Manceron, L. and Papai, I. (1997) An IR Matrix Isolation and DFT Theoretical Study of the First Steps of the Ti (0) Ethylene Reaction: Vinyl Titanium Hydride and Titanacyclopropene. Journal of Physical Chemistry A, 101, 9650-9659.
http://dx.doi.org/10.1021/jp971870e
[8] Cho, H.G. and Andrews, L. (2004) Hydrogen Elimination from Ethylene by Laser-Ablated Zr Atoms: An Infrared Spectroscopic Investigation of the Reaction Intermediates in a Solid Argon Matrix. Journal of Physical Chemistry A, 108, 3965-3972.
http://dx.doi.org/10.1021/jp049566q
[9] Cho, H.G. and Andrews, L. (2007) Matrix Infrared Spectroscopic Studies of the MH-C2H3 and MH2-C2H2 Intermediates in the Reactions of Ethylene with Laser-Ablated Group 5 Metal Atoms. Journal of Physical Chemistry A, 111, 5201-5210.
http://dx.doi.org/10.1021/jp0702806
[10] Cho, H.G. and Andrews, L. (2008) Infrared Spectra of Metallacyclo-propane, Insertion, and Dihydrido Complex Products in Reactions of Laser-Ablated Group 6 Metal Atoms with Ethylene Molecules. Journal of Physical Chemistry A, 112, 12071-12081.
http://dx.doi.org/10.1021/jp806110h
[11] Cho, H.G. and Andrews, L. (2009) Matrix Infrared Spectra of Dihydrido Cyclic and Trihydrido Ethynyl Products from Reactions of Th and U Atoms with Ethylene Molecules. Journal of Physical Chemistry A, 113, 5073-5081.
http://dx.doi.org/10.1021/jp900610c
[12] Yi, S.S., Blomberg, M.R.A., Siegbahn, P.E.M. and Weisshaar, J.C. (1998) Statistical Modeling of Gas-Phase Organometallic Reactions Based on Density Functional Theory: Ni+ + C3H8. Journal of Physical Chemistry A, 102, 395-411.
http://dx.doi.org/10.1021/jp972674a
[13] Blomberg, M., Siegbahn, P.E.M., Yi, S.S., Noll, R.J. and Weisshaar, J.C. (1999) Gas-Phase Ni+(2D5/2) + n-C4H10 Reaction Dynamics in Real Time: Experiment and Statistical Modeling Based on Density Functional Theory. Journal of Physical Chemistry A, 103, 7254-7267.
http://dx.doi.org/10.1021/jp991561j
[14] Jiao, C.Q. and Freiser, B.S. (1995) Reactions of Nbn+ (n = 2 - 6) with Ethylene in the Gas Phase: Collision-Induced Dissociation Studies of Ionic Products. Journal of Physical Chemistry A, 99, 3969-3977.
http://dx.doi.org/10.1021/j100012a017
[15] Stauffer, H.U., Hinrichs, R.Z., Schroden, J.J. and Davis, H.F. (2000) Dynamics of H2 and C2H4 Elimination in the Y + C2H6 Reaction. Journal of Physical Chemistry A, 104, 1107-1116.
http://dx.doi.org/10.1021/jp993525q
[16] Parnis, J.M.P., Lafleur, R.D. and Rayner, D.M. (1995) Hydrocarbon Reactivity with Early Transition Metal Atoms and Neutral Diatomic Metal Oxides in the Gas Phase. Journal of Physical Chemistry A, 99, 673-680.
http://dx.doi.org/10.1021/j100002a035
[17] Siegbahn, P.E.M., Blomberg, M.R.A. and Svensson, M. (1993) A Theoretical Study of the Activation of the Carbon- Hydrogen Bond in Ethylene by Second-Row Transition-Metal Atoms. Journal of the American Chemical Society, 115, 1952-1958.
http://dx.doi.org/10.1021/ja00058a048
[18] Blomberg, M.R.A., Siegbahn, P.E.M. and Svensson, M. (1992) Theoretical Study of the Binding of Ethylene to Second-Row Transition Metal Atoms. Journal of Physical Chemistry A, 96, 9794-9800.
http://dx.doi.org/10.1021/j100203a040
[19] Thompson, M.G.K. and Parnis, J.M. (2005) Photoinduced Ethane Formation from Reaction of Ethene with Matrix- Isolated Ti, V, or Nb Atoms. Journal of Physical Chemistry A, 109, 9465-9470.
http://dx.doi.org/10.1021/jp0447542
[20] Reichert, E.L., Yi, S.S. and Weisshaar, J.C. (2000) Bimo-lecular Ion-Molecule Collisions in Real Time: Co+ (3f4) + n-Butane and Isobutane Reactions. International Journal of Mass Spectrometry, 196, 55-69.
http://dx.doi.org/10.1016/S1387-3806(99)00193-1
[21] Carroll, J.J., Haug, K.L., Weisshaar, J.C., Blomberg, M.R.A., Siegbahn, P.E.M. and Svensson, M. (1995) Gas Phase Reactions of Second-Row Transition Metal Atoms with Small Hydrocarbons: Experiment and Theory. The Journal of Physical Chemistry, 99, 13955-13969.
http://dx.doi.org/10.1021/j100038a030
[22] Willis, P.A., Stauffer, H.U., Hinrichs, R.Z. and Davis, H.F. (1999) Reaction Dynamics of Zr and Nb with Ethylene. The Journal of Physical Chemistry A, 103, 3706-3720.
http://dx.doi.org/10.1021/jp9846633
[23] Gidden, J., van Koppen, P.A.M. and Bowers, M.T. (1997) Dehydroge-nation of Ethene by Ti+ and V+: Excited State Effects on the Mechanism for C-H Bond Activation from Kinetic Energy Release Distributions. Journal of the American Chemical Society, 119, 3935-3941.
http://dx.doi.org/10.1021/ja964377+
[24] Guo, B.C. and Castleman, Jr., A.W. (1992) Dehydrogenation of Ethylene and Propylene and Ethylene Polymerization Induced by Titanium(1+) in the Gas Phase. Journal of the American Chemical Society, 114, 6152-6158.
http://dx.doi.org/10.1021/ja00041a037
[25] Sanders, L., Hanton, S. and Weisshaar, J.C. (1987) Electron Spin State Selectivity in Transition Metal Ion Reactions: V+(a3F) + C2H6→VC2H4+ + H2. The Journal of Physical Chemistry, 91, 5145-5148.
http://dx.doi.org/10.1021/j100304a001
[26] Sievers, M.R., Jarvis, L.M. and Armentrout, P.B. (1998) Transi-tion-Metal Ethene Bonds: Thermochemistry of M+(C2H4)n (M = Ti-Cu, n = 1 and 2) Complexes. Journal of the American Chemical Society, 120, 1891-1899.
http://dx.doi.org/10.1021/ja973834z
[27] Simon, A., MacAleese, L., Boissel, P. and Maitre, P. (2002) Towards the Characterization of the Mechanism of the Sequential Activation of Four Methane Molecules by Ta+. International Journal of Mass Spectrometry, 219, 457-473.
http://dx.doi.org/10.1016/S1387-3806(02)00700-5
[28] Cho, H.G. and Andrews, L. (2005) Infrared Spectrum and Structure of CH2=ThH2. The Journal of Physical Chemistry A, 109, 6796-6798.
http://dx.doi.org/10.1021/jp052918o
[29] Lyon, J.T., Andrews, L., et al. (2007) Infrared Spectrum and Bonding in Uranium Methylidene Dihydride, CH2=UH2. Inorganic Chemistry, 46, 4917-4925.
http://dx.doi.org/10.1021/ic062407w
[30] Frisch, M.J., et al. (2003) GAUSSIAN 03 (Revision-E.01), Gaussian, Inc., Pittsburgh, PA.
[31] Liu, Z., Zhong, L., Yang, Y., Cheng, R. and Liu, B. (2011) DFT and CASPT2 Study on the Mechanism of Ethylene Dimerization over Cr(II)OH+ Cation. The Journal of Physical Chemistry A, 115, 8131-8141.
http://dx.doi.org/10.1021/jp111108p
[32] Wang, T., Brudvig, G. and Batista, V.S. (2010) Characterization of Proton Coupled Electron Transfer in a Biomimetic Oxomanganese Complex: Evaluation of the DFT B3LYP Level of Theory. Journal of Chemical Theory and Computation, 6, 755-760.
http://dx.doi.org/10.1021/ct900615b
[33] Cao, Z. and Ren, T. (2011) DFT Study of Electronic Properties of 3d Metal Complexes of σ-Geminal Diethynylethenes (gem-DEEs). Organometallics, 30, 245-250.
http://dx.doi.org/10.1021/om100870k
[34] McLean, A.D. and Chandler, G.S. (1980) Contracted Gaussian Basis Sets for Molecular Calculations. I. Second Row Atoms, Z=11-18. The Journal of Chemical Physics, 72, 5639-5648.
http://dx.doi.org/10.1063/1.438980
[35] Raghavachari, K., Trucks, G.W. and Pople, J.A. (1989) A Fifth-Order Perturbation Comparison of Electron Correlation Theories. Chemical Physics Letters, 157, 479-483.
http://dx.doi.org/10.1016/S0009-2614(89)87395-6
[36] Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M. and Weinhold, F. (2001) NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison.
[37] Yoshizawa, K., Shiota, Y. and Yamabe, T. (1999) Methane-Methanol Conversion by MnO+, FeO+, and CoO+: A Theoretical Study of Catalytic Selectivity. Journal of the American Chemical Society, 120, 564-572.
http://dx.doi.org/10.1021/ja971723u
[38] Harvey, J.N., Aschi, M., Schwarz, H. and Koch, W. (1998) The Singlet and Triplet States of Phenyl Cation. A Hybrid Approach for Locating Minimum Energy Crossing Points between Non-Interacting Potential Energy Surfaces. Theoretical Chemistry Accounts, 99, 95-99.
http://dx.doi.org/10.1007/s002140050309
[39] Dai, G.L. and Fan, K.N. (2006) Theoretical Study of the Reaction of Sc+ with SCO in Gas Phase. Journal of Molecular Structure: THEOCHEM, 778, 55-61.
http://dx.doi.org/10.1016/j.theochem.2006.08.043
[40] Turro, N.J. (1987) Modern Molecular Photochemistry. Science Press, Beijing.
[41] Chatt, J. and Duncanson, L.A. (1953) 586. Olefin Co-Ordination Compounds. Part III. In-fra-Red Spectra and Structure: Attempted Preparation of Acetylene Complexes. Journal of the Chemical Society, 2939-2947.
http://dx.doi.org/10.1039/jr9530002939
[42] Wang, X. and Andrews, L. (2002) Neon Matrix Infrared Spectra and DFT Calculation of Tungsten Hydrides WHx (x = 1-4, 6). The Journal of Physical Chemistry A, 106, 6720-6729.
http://dx.doi.org/10.1021/jp025920d
[43] Wang, C.L., Wang, Y.C., Jin, Y.Z., Ji, D.F., La, M.J., Ma, W.P. and Nian, J.Y. (2011) Theoretical Study of the C-H Bond in C2H4 by the Group 5 Metal Actoms (V, Nb, Ta) in the Gas-Phase. Computational and Theoretical Chemistry, 974, 43-51.
http://dx.doi.org/10.1016/j.comptc.2011.07.010