石墨烯材料制备技术研究进展
Research Progress in Preparation Technology of Graphene
DOI: 10.12677/MS.2016.66045, PDF, HTML, XML,  被引量 下载: 3,497  浏览: 7,909  科研立项经费支持
作者: 顾 健, 何云凤, 张小平, 杨文阳, 庞爱民:湖北航天化学技术研究所,湖北 襄阳;付 磊:武汉大学,化学与分子科学学院,湖北 武汉
关键词: 石墨烯纳米材料制备方法Graphene Nanomaterial Preparation Methods
摘要: 石墨烯是二维晶体结构的碳纳米材料,其具有优异的导电、导热、光学和力学特性引起了研究者的浓厚兴趣,在材料、电子、物理、化学、能源、生物医药等众多领域具有广阔的应用前景。本文详细综述了近年来国内外参考文献对于石墨烯制备方法的研究,并指出了目前各种石墨烯制备方法中存在的问题。最后,本文对石墨烯制备方法的改进方向进行了展望。
Abstract: Graphene is a kind of crystallized carbon nanomaterial with two-dimensional structure, and its excellent electrical conductivity, thermal conductivity, optical and mechanical properties have at-tracted tremendous interests of scientists. Graphene can be widely used in the fields of materials, electronics, physics, chemistry, energy resources, biomedicines, and so on. The references at home and abroad in recent years have been referred. The preparation methods of graphene are reviewed in detail, and the technical problems encountered in the research are also described. Finally, the improvement ideas on the preparation methods of graphene are prospected.
文章引用:顾健, 何云凤, 张小平, 付磊, 杨文阳, 庞爱民. 石墨烯材料制备技术研究进展[J]. 材料科学, 2016, 6(6): 346-360. http://dx.doi.org/10.12677/MS.2016.66045

参考文献

[1] Geim, A.K. and Novoselov, K.S. (2007) The Rise of Graphene. Nature Materials, 6, 183-191.
[2] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
[3] Novoselov, K.S., Jiang, D., Schedin, F., et al. (2005) Two-Dimensional Atomic Crystals. Proceedings of the National Academy of Sciences, 102, 10451-10456.
[4] Avoufis, P., Chen, Z. and Perebeinos, V. (2007) Carbon-Based Electronics. Nature Nanotechnology, 2, 605-615.
[5] 王耀玲, 罗雨, 陈立宝, 李秋红, 王太宏. 石墨烯材料的研究进展[J]. 材料导报, 2010, 24(15): 85-88.
[6] 杨贻婷, 赵西坡, 吴涛, 杨罡, 彭少贤. 化学法制备石墨烯研究进展[J]. 高分子通报, 2014(6): 122-127.
[7] Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S. and Govindaraj, A. (2009) Graphene: The New Two-Dimensional Nanomaterial. Angewandte Chemie International Edition, 48, 7752-7777.
[8] Peierls, R.E. (1935) Quelques proprieties typiques des corpses solides. Annales de l’Institut Henri Poincaré, 5, 177- 222.
[9] Landau, L.D. (1937) Zur theorie der phasenumwandlungen II. Physikalische Zeitschrift der Sowjetunion, 11, 26-35.
[10] Meyer, J.C., Geim, A.K., Katsnelson, M.I., et al. (2007) The Structure of Suspended Graphene Sheets. Nature, 446, 60263.
[11] Gopichand, N., Sergei, R. and Raj, S. (2010) Remote Plasma Assisted Growth of Graphene Film. Applied Physics Letters, 96, 15410-15415.
[12] Nelson, F.J., Kamineni, V.K., Zhang, T., et al. (2010) Optical Properties of Large-Area Polycrystalline Chemical Vapor Deposited Graphene by Spectroscopic Ellipsometry. Applied Physics Letters, 97, 253110.
[13] Cao, H.L., Yu, Q.K., Colby, R., et al. (2010) Large-Scale Graphitic Thin Films Synthesized on Ni and Transferred to Insulators: Structure and Electronic Properties. Journal Applied Physics, 107, 004310.
[14] Cai, W.W., Piner, R.D., Zhu, Y.W., et al. (2009) Synthesis of Isotopically-Labeled Graphite Films by Cold-Wall Chemical Vapor Deposition and Electronic Properties of Graphene Obtained from Such Films. Nano Research, 2, 851- 858.
[15] Balandin, A.A., Ghosh, S., Bao, W.Z., et al. (2008) Superior Thermal Conductivity of Single-Layer Graphene. Nano Letter, 8, 902-907.
[16] Lee, Y.H. and Lee, J.H. (2010) Scalable Growth of Free-Standing Graphene Wafers with Copper (Cu) Catalyst on SiO2/Si Substrate: Thermal Conductivity of the Wafers. Applied Physics Letters, 96, Article ID: 083101.
http://dx.doi.org/10.1063/1.3324698
[17] Lee, C.G., Wei, X.D., Kysar, J. and Hone, J. (2008) Measurement of the Elastic Properties and Instrinsic Strength of Monolayer. Science, 321, 385-388.
http://dx.doi.org/10.1126/science.1157996
[18] Jee, H.Q., Han, J.H., Hwang, H.N., et al. (2009) Pentacene as Protection Layers of Graphene on SiC Surfaces. Applied Physics Letters, 95, Article ID: 093107.
http://dx.doi.org/10.1063/1.3224833
[19] Langer, T., Pfhur, H., Schumacher, H.W. and Tegenkamp, C. (2009) Graphitization Process of SiC (0001) Studied by Electron Energy Loss Spectroscopy. Applied Physics Letters, 94, Article ID: 112106.
http://dx.doi.org/10.1063/1.3100776
[20] Chae, H.K., Siberio-Prez, D.Y., Kim, J., et al. (2004) A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals. Nature, 427, 523-527.
http://dx.doi.org/10.1038/nature02311
[21] Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R. and Geim, A.K. (2008) Fine Structure Constant Defines Visual Transparency of Graphene. Science, 320, 1308.
http://dx.doi.org/10.1126/science.1156965
[22] Li, Z.Q., Henriksen, E.A., Jiang, Z., et al. (2008) Dirac Charge Dynamics in Graphene by Infrares Spectroscopy. Nature Physics, 4, 532-535.
http://dx.doi.org/10.1038/nphys989
[23] Chae, S.J., Gunes, F., Kim, K.K., et al. (2009) Synthesis of Large-Area Graphene Layers on Nickel Film by Chemical Vapor Deposition: Wrinkle Formation. Proceedings of SPIE, 7399, Article ID: 828039.
http://dx.doi.org/10.1117/12.828039
[24] 李兴鳌, 王博琳, 刘忠儒. 石墨烯的制备、表征和特性研究进展[J]. 材料导报A: 综述篇, 2012, 26(1): 61-65.
[25] Selo, J.H., Jo, I., Moore, A.L., et al. (2010) Two-Dimensional Phonon Transport in Supported Grapheme. Science, 328, 213-216.
http://dx.doi.org/10.1126/science.1184014
[26] Gomez-Navarro, C., Burghard, M. and Kem, K. (2008) Elastic Properties of Chemically Derived Single Graphene Sheets. Nano Letters, 8, 2045-2049.
http://dx.doi.org/10.1021/nl801384y
[27] Bunch, J.S., Verbridge, S.S., Alden, J.S., et al. (2008) Impermeable Atomic Mem-branes from Graphene Sheets. Nano Letters, 8, 2458-2462.
http://dx.doi.org/10.1021/nl801457b
[28] Frank, I., Tanenbaum, D., Van der Zande, A. and McEuen, P.L. (2007) Mechanical Properties of Suspended Graphene Sheets. Journal of Vacuum Science & Technology B, 25, 2558.
http://dx.doi.org/10.1116/1.2789446
[29] Liu, X.-W., Mao, J.-J., Liu, P.-D. and Wei, X.-W. (2011) Fabrication of Metal-Graphene Hybrid Materials by Electroless Deposition. Carbon, 49, 477-483.
http://dx.doi.org/10.1016/j.carbon.2010.09.044
[30] Dreyer, D.R., Park, S., Bielawski, C.W. and Ruoff, R.S. (2010) The Chemistry of Graphene Oxide. Chemical Society Reviews, 39, 228-240.
http://dx.doi.org/10.1039/B917103G
[31] Khan, U., O’Neill, A., Lotya, M., De, S. and Coleman, J.N. (2010) High-Concentration Solvent Exfoliation of Graphene. Small, 6, 864-871.
http://dx.doi.org/10.1002/smll.200902066
[32] Liu, W., Zhou, R., Zhou, D., et al. (2015) Lignin-Assisted Direct Exfoliation of Graphite to Graphene in Aqueous Media and Its Application in Polymer Composites. Carbon, 83, 188-197.
http://dx.doi.org/10.1016/j.carbon.2014.11.036
[33] Jiang, F., Xue, W.D., Wei, Y., Eng, Y. and Yin, P. (2012) Microwave Synthesis and Electrochemical Capacitive Behaviors of Graphene. Electronic Components and Materials, 31, 68-71.
[34] Rasuli, R., Mokarian, Z., Karimi, R., Shabanzadeh, H. and Abedini, Y. (2015) Wettability Modification of Graphene Oxide by Removal of Carboxyl Functional Groups Using Non-Thermal Effects of Microwave. Thin Solid Films, 589, 364-368.
http://dx.doi.org/10.1016/j.tsf.2015.06.002
[35] Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., et al. (2009) Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons. Nature, 458, 872-876.
http://dx.doi.org/10.1038/nature07872
[36] Jiao, L., Zhang, L., Wang, X., Diankov, G. and Dai, H.J. (2009) Narrow Graphene Nanoribbons from Carbon Nanotubes. Nature, 458, 877-880.
http://dx.doi.org/10.1038/nature07919
[37] Zhou, M., Tang, J., Cheng, Q., Xu, G.J., Cui, P. and Qin, L.-C. (2013) Few-Layer Graphene Obtained by Electrochemical Exfoliation of Graphite Cathode. Chemical Physics Letters, 572, 61-65.
http://dx.doi.org/10.1016/j.cplett.2013.04.013
[38] Chen, K. and Xue, D. (2014) Preparation of Colloidal Graphene in Quantity by Electrochemical Exfoliation. Journal of Colloid and Interface Science, 436, 41-46.
http://dx.doi.org/10.1016/j.jcis.2014.08.057
[39] 王黎东, 费维栋. 高效率低成本机械剥离制备石墨烯或氧化石墨烯的方法[P]. 中国, 201010179119.1. 2010-05- 21.
[40] Zhao, W.F., Fang, M., Wu, F.R., Wu, H., Wang, L.W. and Chen, G.H. (2010) Preparation of Graphene by Exfoliation of Graphite Using Wet Ball Milling. Journal of Materials Chemistry, 20, 5817-5819.
http://dx.doi.org/10.1039/c0jm01354d
[41] Reina, A., Jia, X.T., Ho, J., et al. (2009) Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 9, 30-35.
http://dx.doi.org/10.1021/nl801827v
[42] Mattevi, C., Kim, H. and Chhowalla, M. (2011) A Review of Chemical Vapour Deposition of Graphene on Copper. Journal of Materials Chemistry, 21, 3324-3334.
http://dx.doi.org/10.1039/C0JM02126A
[43] Zhang, Y., Zhang, L. and Zhou, C. (2013) Review of Chemical Vapor Deposition of Graphene and Related Applications. Accounts of Chemical Research, 46, 2329-2339.
http://dx.doi.org/10.1021/ar300203n
[44] 任文才, 高力波, 马来鹏, 等. 石墨烯的化学气相沉积法制备[J]. 新型炭材料, 2011, 26(1): 71-75.
[45] Rohrl, J., Hundhausen, M., Emtsev, K.V., Seyller, Th., Graupner, R. and Ley, L. (2008) Raman Spectra of Epitaxial Graphene on SiC(0001). Applied Physics Letters, 92, Article ID: 201918.
http://dx.doi.org/10.1063/1.2929746
[46] Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Röhrl, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B. and Seyller, T. (2009) Towards Wafer-Size Graphene Layers by Atmospheric Pressure Graphitization of Silicon Carbide. Nature Materials, 8, 203-207.
http://dx.doi.org/10.1038/nmat2382
[47] Hofrichter, J., Bartholomäus, N.S., Otto, M., et al. (2010) Synthesis of Graphene on Silicon Dioxide by a Solid Carbon Source. Nano Letters, 10, 36-42.
http://dx.doi.org/10.1021/nl902558x
[48] Zheng, M., Takei, K., Hsia, B., et al. (2010) Metal-Catalyzed Crystallization of Amorphous Carbon to Graphene. Applied Physics Letters, 96, Article ID: 063110.
http://dx.doi.org/10.1063/1.3318263
[49] Liu, N., Fu, L., Dai, B.Y., et al. (2011) Universal Segregation Growth Approach to Wafer-Size Graphene from Non-Noble Metals. Nano Letters, 11, 297-303.
http://dx.doi.org/10.1021/nl103962a
[50] Schwab, M.G., Narita, A., Hernandez, Y., Balandina, T., Mali, K.S., Feyter, S.D., Feng, X.L. and Mullen, K. (2012) Structurally Defined Graphene Nanoribbons with High Lateral Extension. Journal of the American Chemistry Society, 134, 18169-18172.
http://dx.doi.org/10.1021/ja307697j
[51] Ishii, Y., Song, H.Y., Kato, H., Takatori, M. and Kawasaki, S. (2012) Facile Bottom-Up Synthesis of Graphene Nanofragments and Nanoribbons by Thermal Polymerization of Penta-cenes. Nanoscale, 4, 6553-6561.
http://dx.doi.org/10.1039/c2nr31893h
[52] Stankovich, S., Dikin, D.A., Piner, R.D., et al. (2007) Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon, 45, 1558-1565.
http://dx.doi.org/10.1016/j.carbon.2007.02.034
[53] Worsley, M.A., Kucheyev, S.O., Mason, H.E., Merrill, M.D., Mayer, B.P., Lewicki, J., et al. (2012) Mechanically Robust 3D Graphene Macroassembly with High Surface Area. Chemical Communications, 48, 8428-8430.
http://dx.doi.org/10.1039/c2cc33979j
[54] Yin, F., Chen, D.Z., Liu, J.J., et al. (2013) Preparation Technology and Thermostability of Grapheme Oxide. Journal of Materials Science & Engineering, 31, 336.
[55] Jin, Y., Huang, S., Zhang, M., Jia, M.Q. and Hu, D. (2013) A Green and Efficient Method to Produce Graphene for Electrochemical Capacitors from Graphene Oxide Using Sodium Carbonate as a Reducing Agent. Applied Surface Science, 268, 541-546.
http://dx.doi.org/10.1016/j.apsusc.2013.01.004
[56] Jin, Y., Jia, M., Zhang, M. and Wen, Q.Q. (2013) Preparation of Stable Aqueous Dispersion of Graphene Nanosheets and Their Electrochemical Capacitive Properties. Applied Surface Science, 264, 787-793.
http://dx.doi.org/10.1016/j.apsusc.2012.10.130
[57] Chong, S.W., Lai, C.W. and Abdul Hamid, S.B. (2015) Green Preparation of Reduced Graphene Oxide Using a Natural Reducing Agent. Ceramics International, 41, 9505-9513.
http://dx.doi.org/10.1016/j.ceramint.2015.04.008
[58] Compton, O.C. and Nguyen, S.T. (2010) Graphene Oxide, Highly Reduced Graphene Oxide and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small, 6, 711-723.
http://dx.doi.org/10.1002/smll.200901934
[59] Hernandez, Y., Nicolosi, V., Lotya, M., et al. (2008) High-Yield Production of Graphene by Liquid Phase Exfoliation of Graphite. Nature Nanotechnology, 3, 563-568.
http://dx.doi.org/10.1038/nnano.2008.215
[60] Shanmugharaj, A.M., Choi, W.S., Lee, C.W. and Ryu, S.H. (2011) Electro-chemical Performances of Graphene Nanosheets Prepared through Microwave Radiation. Journal of Power Sources, 196, 10249-10253.
http://dx.doi.org/10.1016/j.jpowsour.2011.08.039
[61] Yan, Q., Liu, Q. and Wang, J. (2016) A Simple and Fast Microwave Assisted Approach for the Reduction of Graphene Oxide. Ceramics International, 42, 3007-3013.
http://dx.doi.org/10.1016/j.ceramint.2015.10.085
[62] Kim, K., Sussman, A. and Zettl, A. (2010) Graphene Nanoribbons Ob-tained by Electrically Unwrapping Carbon Nanotubes. ACS Nano, 4, 1362-1366.
http://dx.doi.org/10.1021/nn901782g
[63] Liu, J., Poh, C.K., Zhan, D., et al. (2013) Improved Synthesis of Graphene Flakes from the Multiple Electrochemical Exfoliation of Graphite Rod. Nano Energy, 2, 377-386.
http://dx.doi.org/10.1016/j.nanoen.2012.11.003
[64] Kim, K.S., Zhao, Y., Jang, H., et al. (2009) Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature, 457, 706-710.
http://dx.doi.org/10.1038/nature07719
[65] Park, S. and Ruoff, R.S. (2009) Chemical Methods for the Production of Graphenes. Nature Nanotechnology, 4, 217-224.
http://dx.doi.org/10.1038/nnano.2009.58
[66] Rümmeli, M.H., Bachmatiuk, A., Scott, A., et al. (2010) Direct Low-Temperature Nanographene CVD Synthesis over a Dielectric Insulator. ACS Nano, 4, 4206-4210.
http://dx.doi.org/10.1021/nn100971s
[67] Gaddam, S., Bjelkevig, C., Ge, S.P., Fukutani, K., Dowben, P.A. and Kelber, J.A. (2011) Direct Graphene Growth on MgO: Origin of the Band Gap. Journal of Physics: Condensed Matter, 23, Article ID: 072204.
http://dx.doi.org/10.1088/0953-8984/23/7/072204
[68] Chen, Y.Y., Wen, Y.G., Guo, Y.L., et al. (2011) Oxygen-Aided Synthe-sis of Polycrystalline Graphene on Silicon Dioxide Substrates. Journal of the American Chemistry Society, 133, 17548-17551.
http://dx.doi.org/10.1021/ja2063633
[69] Li, X.S., Cai, W.W., An, J.H., Kim, S., Nah, J., Yang, D.X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L. and Ruoff, R.S. (2009) Large-Area Synthesis of High Quality and Uniform Graphene Films on Copper Foils. Science, 324, 1312-1314.
http://dx.doi.org/10.1126/science.1171245
[70] Verma, V.P., Das, I., Lahiri, I. and Choi, W. (2010) Large-Area Graphene on Polymer Film for Flexible and Transparent Anode in Field Emission Device. Applied Physics Letters, 96, Article ID: 203108.
http://dx.doi.org/10.1063/1.3431630
[71] Gao, L.B., Ren, W.C., Xu, H.L., et al. (2012) Repeated Growth and Bubbling Transfer of Graphene with Millimetre-Size Single-Crystal Grains Using Platinum. Nature Communications, 3, Article No. 699.
[72] Li, X.S., Cai, W.W., Colombo, L. and Ruoff, R.S. (2009) Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters, 9, 4268-4272.
http://dx.doi.org/10.1021/nl902515k
[73] 黄曼, 郭云龙, 武斌, 等. 化学气相沉积法合成石墨烯的转移技术研究进展[J]. 化学通报, 2012, 75(11): 974-977.
[74] Berger, C., Song, Z.M., Li, X.B., et al. (2006) Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science, 312, 1191-1196.
http://dx.doi.org/10.1126/science.1125925
[75] De Heer, W.A., Berger, C., Wu, X.S., et al. (2007) Epitaxial Graphene. Solid State Communications, 143, 92-100.
http://dx.doi.org/10.1016/j.ssc.2007.04.023
[76] Jernigan, G.G., VanMil, B.L., Tedesco, J.L., et al. (2009) Comparison of Epitaxial Graphene on Si-Face and C-Face 4H SiC Formed by Ultrahigh Vacuum and RF Furnace Production. Nano Letters, 9, 2605-2609.
http://dx.doi.org/10.1021/nl900803z
[77] 唐军, 刘忠良, 康朝阳. 退火时间对6H-SIC(0001)表面外延石墨烯形貌和结构的影响[J]. 物理化学学报, 2010, 26(1): 253-258.
[78] Dharmaraj, P., Jeganathan, K., Gokulakrishan, V., et al. (2013) Controlled and Selective Area Growth of Monolayer Graphene on 4H-SiC Substrate by Electron-Beam-Assisted Rapid Heating. Journal of Physics Chemistry C, 117, 19195-19202.
http://dx.doi.org/10.1021/jp404483y
[79] 于海玲, 朱嘉琦, 曹文鑫, 韩杰才. 金属催化制备石墨烯的研究进展[J]. 物理学报, 2013, 62(2): 028201-1- 028201-10.
[80] Fujita, J., Ueki, R., Miyazawa, Y. and Ichihashi, T. (2009) Graphitization at Interface between Amorphous Carbon and Liquid Gallium for Fabricating Large Area Graphene Sheets. Journal of Vacuum Science & Technology B, 27, 3063- 3066.
http://dx.doi.org/10.1116/1.3253542
[81] Sutter, P. (2009) Epitaxial Graphene: How Silicon Leaves the Scene. Nature Materials, 8, 171-172.
http://dx.doi.org/10.1038/nmat2392
[82] Zhang, W.X., Cui, J.C., Tao, C.A., Wu, Y.G., Li, Z.P., Ma, L., Wen, Y.Q. and Li, G. (2009) A Strategy for Producing Pure Single-Layer Graphene Sheets Based on a Confined Self-Assembly Approach. Angewandte Chemie International Edition, 48, 5864-5868.
http://dx.doi.org/10.1002/anie.200902365
[83] Cai, J.M., Ruffieux, P., Jaafar, R., et al. (2010) Atomically Precise Bottom-Up Fabrication of Graphene Nanoribbons. Nature, 466, 470-473.
http://dx.doi.org/10.1038/nature09211
[84] 美科学家以蔗糖为原料制出纯净石墨烯[J]. 炭素技术, 2011(30): 42.