Cu2+、Zn2+、Ni2+、Cr6+对生菜生长的影响
Effects of Cu2+, Zn2+, Ni2+, Cr6+ Metal on Lactuca sativa
DOI: 10.12677/BR.2016.56022, PDF, HTML, XML, 下载: 1,829  浏览: 3,069 
作者: 王国栋, 张运春*, 张桥英, 臧立华:齐鲁工业大学环境科学与工程学院,山东 济南
关键词: 重金属胁迫生长发育根长叶面积Heavy Metal Stress Growth Development Root Length Leaf Area
摘要: 本文以重金属离子Cu2+、Zn2+、Ni2+、Cr6+为材料,以水晶生菜为研究对象,探讨了重金属胁迫对生菜的伤害机理及生菜对重金属胁迫的耐性机制。结果显示重金属对植物生长发育的影响体现在多个方面。例如Cu2+对植物株高,叶面积、根长以及地下生物量的影响从低浓度就开始表现出抑制作用,随浓度增大抑制作用越发明显。Zn2+、Ni2+、Cr6+对植物的影响整体看来表现出低浓度有促进作用,但随浓度增加表现出抑制作用,而且呈现正相关。生菜对重金属胁迫的敏感性在不同发育阶段也存在着明显的差异,以幼苗期最为敏感。
Abstract: In this paper, Lactuca sativa was chosen as the focus plant species to test the injury mechanism of heavy metal stress, the tolerance mechanism of Lactuca sativa to heavy metals Cu2+, Zn2+,  Ni2+, Cr6+ was also tested. The results showed that, heavy metals could show their injury effects on the growth and development of Lactuca sativa through different ways. For example, Cu2+ inhibited the height, leaf area, root length and biomass even when it’s in low concentration and, inhibition increased with the increase of concentration. However, Zn2+,  Ni2+, Cr6+ promoted the growth of Lactuca sativa when they were in lower concentrations, while they inhibited the growth of Lactuca sativa when in higher concentrations, and the inhibition increased with the increase of concentration. Lactuca sativa showed different tolerance mechanism to heavy metals in different growth stages, and its seedlings were the most sensitive stage.
文章引用:王国栋, 张运春, 张桥英, 臧立华. Cu2+、Zn2+、Ni2+、Cr6+对生菜生长的影响[J]. 植物学研究, 2016, 5(6): 173-179. http://dx.doi.org/10.12677/BR.2016.56022

参考文献

[1] 高太忠, 李景印. 土壤重金属污染研究与治理现状[J]. 土壤与环境, 1999, 8(2): 137-140.
[2] 王云, 魏复盛, 等. 土壤环境化学元素[M]. 北京: 中国环境科学出版社, 1995.
[3] 张金彪, 黄维南. 镉对植物的生理生态效应的研究进展[J]. 生态学报, 2000, 20(3): 514-523.
[4] 吴晓红, 何士敏, 张树权. Cd胁迫下大豆幼苗生理生化特性分析[J]. 黑龙江环境通报, 2001, 25(3): 65-68.
[5] 李洋, 于丽杰, 金晓霞. 植物重金属胁迫耐受机制[J]. 中国生物工程杂志, 2015, 35(9): 94-104.
[6] 杨居荣, 贺建新, 蒋婉如. Cd污染对植物生理生化的影响[J]. 农业环境保护, 1995, 14(5): 193-197.
[7] 周建华, 王永锐. 硅营养缓解水稻幼苗铬毒害的研究[J]. 应用与环境生物学报, 1999, 5(1): 11-15.
[8] Somashekaraiah, B.V., Padmaja, K. and Prasa, R.K. (1992) Phytotoxicity of Cadmium Ions Germination Seedling of Mung Bean (Phaseolus vulgarize): Involvement of Lipid Peroxides in Chlorophyll Degradation. Physiologia Plantarum, 85, 85-89.
http://dx.doi.org/10.1111/j.1399-3054.1992.tb05267.x
[9] 杨丹慧. 重金属离子对高等植物光合膜结构与功能的影响[J]. 植物学报, 1991, 8(3): 26-29.
[10] 李德明, 朱祝军. Cd对植物光合作用的影响[J]. 广东微量元素学科学, 2005, 12(5): 61-65.
[11] 杨居荣, 贺建群, 张国祥, 等. 不同耐性物中几种酶活性对Cd胁迫的反应[J]. 中国环境科学, 1996, 16(2): 113-117.
[12] 曾晓敏, 施国新, 徐勤松, 等. Hg, Cu胁迫下保护酶系统的防御作用[J]. 应用与环境生物学报, 2002, 8(3): 250- 254.
[13] 任安芝, 高玉葆, 刘爽. 青菜幼苗体内几种保护酶的活性对Pb, Cd, C胁迫反应的研究[J]. 应用生态学报, 2002, 13 (4): 510-512.
[14] Baryla, A., Carrier, P., Franck, F., et al. (2001) Leaf Chlorosis in Oilseed Rape Plants (Brassica napus) Grown on Cadmium-Polluted Soil: Causes and Consequences for Photosynthesis and Growth. Planta, 212, 696-709.
[15] Scandalios, J.G. (2013) Oxygen Stress and Superoxide Dismutase. Plant Physiology, 101, 7-12.
http://dx.doi.org/10.1104/pp.101.1.7