花色表型变异的分子机制及自然选择
Molecular Mechanisms and Natural Selection of Flower Color Variation
DOI: 10.12677/BR.2016.56024, PDF, HTML, XML, 下载: 2,636  浏览: 8,621  国家自然科学基金支持
作者: 张瑞娟:中国科学院植物研究所系统与进化植物学国家重点实验室,北京;中国科学院大学,北京;鲁迎青:中国科学院植物研究所系统与进化植物学国家重点实验室,北京
关键词: 花青素花色变异传粉者适合度自然选择Anthocyanin Floral Color Variation Pollinators Fitness Natural Selection
摘要: 花色对吸引传粉者具有非常重要的作用。自然界的花色具有多样性,主要包括色调和着色模式的变异。虽然前人对花色变异的物质和遗传基础做了大量的研究,但许多花色变异模式特别是着色模式的分子机制还不清楚。传粉者与非传粉者因素介导的自然选择对花色表型变异的选择机制也有许多未解之谜。本文主要对已知花色表型变异的分子机制及自然选择对花色表型的选择作用进行综述,以便进一步地探索花色多样性存在的机制和自然选择对花色进化方向的影响。
Abstract: Flower color plays a key role in attracting pollinators, and a staggering variety of flower color variations including color parameters and pigmentation pattern exist in nature. Though many studies have been done on the molecular mechanisms of flower color variation, there is still much unknown, especially for pigmentation pattern. The contributions of pollinator and non-pollinator agents to natural selection on floral color variation are also unclear. The review discusses recent data on genetic mechanisms and natural selection of flower color variation. The summary may as-sist us to further analyze molecular mechanisms of flower color diversity and role of natural se-lection in flower color variation.
文章引用:张瑞娟, 鲁迎青. 花色表型变异的分子机制及自然选择[J]. 植物学研究, 2016, 5(6): 186-209. http://dx.doi.org/10.12677/BR.2016.56024

参考文献

[1] Cooper-Driver, G.A. (2001) Contributions of Jeffrey Harborne and Co-Workers to the Study of Anthocyanins. Phytochemistry, 56, 229-236.
https://doi.org/10.1016/s0031-9422(00)00455-6
[2] Grotewold, E. (2006) The Genetics and Biochemistry of Floral Pigments. Annual Review of Plant Biology, 57, 761-780.
https://doi.org/10.1146/annurev.arplant.57.032905.105248
[3] Tanaka, Y., Sasaki, N. and Ohmiya, A. (2008) Biosynthesis of Plant Pigments: Anthocyanins, Betalains and Carotenoids. The Plant Journal, 54, 733-749.
https://doi.org/10.1111/j.1365-313X.2008.03447.x
[4] Marrs, K.A., Alfenito, M.R., Lloyd, A.M. and Walbot, V. (1995) A Glutathione S-Transferase Involved in Vacuolar Transfer Encoded by the Maize Gene Bronze-2. Nature, 375, 397-400.
https://doi.org/10.1038/375397a0
[5] Kong, J.M., Chia, L.S., Goh, N.K., Chia, T.F. and Brouillard, R. (2003) Analysis and Biological Activities of Anthocyanins. Phytochemistry, 64, 923-933.
https://doi.org/10.1016/S0031-9422(03)00438-2
[6] Chopra, S., Hoshino, A., Boddu, J. and Iida, S. (2006) Flavonoid Pigments as Tools in Molecular Genetics. In: Grotewold, E., Ed., The Science of Flavonoids, Springer, New York, 147-173.
https://doi.org/10.1007/978-0-387-28822-2_6
[7] 黄金霞, 王亮生, 李晓梅, 鲁迎青. 花色变异的分子基础与进化模式研究进展[J]. 植物学通报, 2006, 23(4): 321- 333.
[8] Stobiecki, M. and Kachlicki, P. (2006) Isolation and Identification of Flavonoids. In: Grotewold, E., Ed., The Science of Flavonoids, Springer, New York, 47-69.
https://doi.org/10.1007/978-0-387-28822-2_2
[9] Sisa, M., Bonnet, S.L., Ferreira, D. and Van der Westhuizen, J.H. (2010) Photochemistry of Flavonoids. Molecules, 15, 5196-5245.
https://doi.org/10.3390/molecules15085196
[10] Tanaka, Y., Tsuda, S. and Kusumi, T. (1998) Metabolic Engineering to Modify Flower Color. Plant and Cell Physiology, 39, 1119-1126.
https://doi.org/10.1093/oxfordjournals.pcp.a029312
[11] Harborne, J.B. and Baxter, H. (1999) The Handbook of Natural Fla-vonoids. Vol. 1 and Vol. 2, John Wiley & Sons, Hoboken. http://dx.doi.org/10.1016/S0039-9140(00)00629-9
[12] Harborne, J.B. and Williams, C.A. (2000) Advances in Flavonoid Research Since 1992. Phytochemistry, 55, 481-504.
https://doi.org/10.1016/S0031-9422(00)00235-1
[13] Harborne, J.B. and Williams, C.A. (2001) Anthocyanins and Other Fla-vonoids. Natural Product Reports, 18, 310-333.
https://doi.org/10.1039/b006257j
[14] Guo, J., Han, W. and Wang, M.H. (2008) Ultraviolet and Environmental Stresses Involved in the Induction and Regulation of Anthocyanin Biosynthesis: A Review. African Journal of Biotechnology, 7, 4966-4972.
https://doi.org/10.5897/ajb08.090
[15] Noda, K., Glover, B.J., Linstead, P. and Martin, C. (1994) Flower Color Intensity De-pends on Specialized Cell-Shape Controlled by a Myb-Related Transcription Factor. Nature, 369, 661-664.
https://doi.org/10.1038/369661a0
[16] Perezrodriguez, M., Jaffe, F.W., Butelli, E., Glover, B.J. and Martin, C. (2005) Devel-opment of Three Different Cell Types Is Associated with the Activity of a Specific MYB Transcription Factor in the Ventral Petal of Antirrhinum majus Flowers. Development, 132, 359-370.
https://doi.org/10.1242/dev.01584
[17] Baumann, K., Perez-Rodriguez, M., Bradley, D., Venail, J., Bailey, P., Jin, H., Koes, R., Roberts, K. and Martin, C. (2007) Control of Cell and Petal Morphogenesis by R2R3 MYB Transcription Factors. Development, 134, 1691-1701.
https://doi.org/10.1242/dev.02836
[18] Yoshida, K., Kondo, T., Okazaki, Y. and Katou, K. (1995) Cause of Blue Petal Color. Nature, 373, 291.
https://doi.org/10.1038/373291a0
[19] Van Houwelingen, A., Souer, E., Spelt, K., Kloos, D., Mol, J. and Koes, R. (1998) Analysis of Flower Pigmentation Mutants Generated by Random Transposon Mutagenesis in Petunia hybrida. The Plant Journal, 13, 39-50.
https://doi.org/10.1046/j.1365-313X.1998.00005.x
[20] Fukada-Tanaka, S., Inagaki, Y., Yamaguchi, T., Saito, N. and Iida, S. (2000) Colour-Enhancing Protein in Blue Petals. Nature, 407, 581.
https://doi.org/10.1038/35036683
[21] Yamaguchi, T., Fu-kada-Tanaka, S., Inagaki, Y., Saito, N., Yonekura-Sakakibara, K., Tanaka, Y., Kusumi, T. and Iida, S. (2001) Genes Encoding the Vacuolar Na+/H+ Exchanger and Flower Coloration. Plant and Cell Physiology, 42, 451- 461.
https://doi.org/10.1093/pcp/pce080
[22] Yoshida, K., Toyama-Kato, Y., Kameda, K. and Kondo, T. (2003) Sepal Color Variation of Hydrangea macrophylla and Vacuolar pH Measured with a Proton-Selective Microelectrode. Plant and Cell Physiology, 44, 262-268.
https://doi.org/10.1093/pcp/pcg033
[23] Ohnishi, A., Fukada-Tanaka, S., Hoshino, A., Takada, J., Inagaki, Y. and Iida, S. (2005) Characterization of a Novel Na+/H+ Antiporter Gene InNHX2 and Comparison of InNHX2 with InNHX1, Which Is Responsible for Blue Flower Coloration by Increasing the Vacuolar pH in the Japanese Morning Glory. Plant and Cell Physiology, 46, 259-267.
https://doi.org/10.1093/pcp/pci028
[24] Yoshida, K., Kawachi, M., Mori, M., Maeshima, M., Kondo, M., Nishimura, M. and Kondo, T. (2005) The Involvement of Tonoplast Proton Pumps and Na+(K+)/H+ Exchangers in the Change of Petal Color during Flower Opening of Morning Glory, Ipomoea tricolor cv. Heavenly Blue. Plant and Cell Physiology, 46, 407-415.
https://doi.org/10.1093/pcp/pci057
[25] Quattrocchio, F., Verweij, W., Kroon, A., Spelt, C., Mol, J. and Koes, R. (2006) PH4 of Petunia Is an R2R3 MYB Protein That Activates Vacuolar Acidification through Interactions with Basic-Helix-Loop-Helix Tran-scription Factors of the Anthocyanin Pathway. The Plant Cell, 18, 1274-1291.
https://doi.org/10.1105/tpc.105.034041
[26] Momonoi, K., Yoshida, K., Mano, S., Takahashi, H., Nakamori, C., Shoji, K., Nitta, A. and Nishimura, M. (2009) A Vacuolar Iron Transporter in Tulip, TgVit1, Is Responsible for Blue Coloration in Petal Cells through Iron Accumulation. The Plant Journal, 59, 437-447.
https://doi.org/10.1111/j.1365-313X.2009.03879.x
[27] Shoji, K., Momonoi, K. and Tsuji, T. (2010) Alternative Expression of Vacuolar Iron Transporter and Ferritin Genes Leads to Blue/Purple Coloration of Flowers in Tulip cv. “Murasakizuisho”. Plant and Cell Physiology, 51, 215-224.
https://doi.org/10.1093/pcp/pcp181
[28] Winkel-Shirley, B. (2001) It Takes a Garden. How Work on Diverse Plant Species Has Contributed to an Understanding of Flavonoid Metabolism. Plant Physiology, 127, 1399-1404.
https://doi.org/10.1104/pp.010675
[29] 祝志欣, 鲁迎青. 花青素代谢途径与植物颜色变异[J]. 植物学报, 2016, 51(1): 107-119.
[30] Winkel-Shirley, B. (1999) Evidence for Enzyme Complexes in the Phenylpropanoid and Flavonoid Pathways. Physi-ologia Plantarum, 107, 142-149.
https://doi.org/10.1034/j.1399-3054.1999.100119.x
[31] Guan, S. and Lu, Y.Q. (2013) Dis-secting Organ-Specific Transcriptomes through RNA-Sequencing. Plant Methods, 9, 42.
https://doi.org/10.1186/1746-4811-9-42
[32] Davies, K.M. and Schwinn, K.E. (2003) Transcriptional Regulation of Secondary Metabolism. Functional Plant Biology, 30, 913-925.
https://doi.org/10.1071/FP03062
[33] Koes, R., Verweij, W. and Qua-ttrocchio, F. (2005) Flavonoids: A Colorful Model for the Regulation and Evolution of Biochemical Pathways. Trends in Plant Science, 10, 236-242.
https://doi.org/10.1016/j.tplants.2005.03.002
[34] Feller, A., Machemer, K., Braun, E.L. and Grotewold, E. (2011) Evolutionary and Comparative Analysis of MYB and bHLH Plant Transcription Factors. The Plant Journal, 66, 94-116.
https://doi.org/10.1111/j.1365-313X.2010.04459.x
[35] Hichri, I., Barrieu, F., Bogs, J., Kappel, C., Delrot, S. and Lauvergeat, V. (2011) Recent Advances in the Transcriptional Regulation of the Flavonoid Biosynthetic Pathway. Journal of Experimental Botany, 62, 2465-2483.
https://doi.org/10.1093/jxb/erq442
[36] Petroni, K. and Tonelli, C. (2011) Recent Advances on the Regulation of Anthocyanin Synthesis in Reproductive Organs. Plant Science, 181, 219-229.
https://doi.org/10.1016/j.plantsci.2011.05.009
[37] Patra, B., Schluttenhofer, C., Wu, Y.M., Pattanaik, S. and Yuan, L. (2013) Transcriptional Regulation of Secondary Metabolite Biosynthesis in Plants. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1829, 1236- 1247.
https://doi.org/10.1016/j.bbagrm.2013.09.006
[38] Xu, W.J., Dubos, C. and Lepiniec, L. (2015) Transcriptional Control of Flavonoid Biosynthesis by MYB-bHLH-WDR Complexes. Trends in Plant Science, 20, 176-185.
https://doi.org/10.1016/j.tplants.2014.12.001
[39] Ramsay, N.A. and Glover, B.J. (2005) MYB-bHLH-WD40 Protein Complex and the Evolution of Cellular Diversity. Trends in Plant Science, 10, 63-70.
https://doi.org/10.1016/j.tplants.2004.12.011
[40] Wang, H.L., Guan, S., Zhu, Z.X., Wang, Y. and Lu, Y.Q. (2013) A Valid Strategy for Precise Identifications of Transcription Factor Binding Sites in Combinatorial Regulation Using Bioinformatic and Ex-perimental Approaches. Plant Methods, 9, 34-45.
https://doi.org/10.1186/1746-4811-9-34
[41] Zhu, Z.X., Wang, H.L., Wang, Y.T., Guan, S., Wang, F., Tang, J.Y., Zhang, R.J., Xie, L.L. and Lu, Y.Q. (2015) Characterization of the cis Elements in the Proximal Promoter Regions of the Anthocyanin Pathway Genes Reveals a Common Regulatory Logic That Governs Pathway Regulation. Journal of Experimental Botany, 66, 3775-3789.
https://doi.org/10.1093/jxb/erv173
[42] Mol, J., Grotewold, E. and Koes, R. (1998) How Genes Paint Flowers and Seeds. Trends in Plant Science, 3, 212-217.
https://doi.org/10.1016/S1360-1385(98)01242-4
[43] Morohashi, K., Casas, M.I., Ferreyra, L.F., Mejia-Guerra, M.K., Pourcel, L., Yilmaz, A., Feller, A., Carvalho, B., Emiliani, J., Rodriguez, E., Pellegrinet, S., McMullen, M., Casati, P. and Grotewold, E. (2012) A Genome-Wide Regulatory Framework Identifies Maize Pericarp Color1 Controlled Genes. The Plant Cell, 24, 2745-2764.
https://doi.org/10.1105/tpc.112.098004
[44] Stracke, R., Ishihara, H., Barsch, G.H.A., Mehrtens, F., Niehaus, K. and Weisshaar, B. (2007) Differential Regulation of Closely Related R2R3-MYB Transcription Factors Controls Flavonol Accumulation in Different Parts of the Arabidopsis thaliana Seedling. The Plant Journal, 50, 660-677.
https://doi.org/10.1111/j.1365-313X.2007.03078.x
[45] Rausher, M.D. (2006) The Evolution of Flavonoids and Their Genes. In: Grotewold, E., Ed., The Science of Flavonoids, Springer, New York, 175-211.
https://doi.org/10.1007/978-0-387-28822-2_7
[46] Ngaki, M.N., Louie, G.V., Philippe, R.N., Manning, G., Pojer, F., Bowman, M.E., Li, L., Larsen, E., Wurtele, E.S. and Noel, J.P. (2012) Evolution of the Chalcone-Isomerase Fold from Fatty-Acid Binding to Stereospecific Catalysis. Nature, 485, 530-533.
https://doi.org/10.1038/nature11009
[47] Markham, K.R. (1988) Distribution of Flavonoids in the Lower Plants and Its Evolutionary Significance. In: Harborne, J.B., Ed., The Flavonoids, Chapman and Hall, London, 427-468.
https://doi.org/10.1007/978-1-4899-2913-6_12
[48] Timberlake, C.F. and Bridle, P. (1980) The Anthocyanins. In: Harborne, J.B., Mabry, T.J. and Mabry, H., Eds., The Flavonoids, Academic Press, New York, 214-216. http://dx.doi.org/10.1007/978-1-4899-2909-9_5
[49] Niemann, G.J. (1988) Distribution and Evolution of the Flavonoids in Gym-nosperms. In: Harborne, J.B., Ed., The Flavonoids, Chapman and Hall, London, 469-478.
https://doi.org/10.1007/978-1-4899-2913-6_13
[50] Schwinn, K., Venail, J., Shang, Y.J., Mackay, S., Alm, V., Butelli, E., Oyama, R., Bailey, P., Davies, K. and Martin, C. (2006) A Small Family of MYB-Regulatory Genes Controls Floral Pigmentation Intensity and Patterning in the Genus Antirrhinum. The Plant Cell, 18, 831-851.
https://doi.org/10.1105/tpc.105.039255
[51] Whibley, A.C., Langlade, N.B., Andalo, C., Hanna, A.I., Bangham, A., Thebaud, C. and Coen, E. (2006) Evolutionary Paths Underlying Flower Color Variation in Antirrhinum. Science, 313, 963-966.
https://doi.org/10.1126/science.1129161
[52] Cooley, A.M., Modliszewski, J.L., Rommel, M.L. and Willis, J.H. (2011) Gene Duplication in Mimulus Underlies Parallel Floral Evolution via Independent Trans-Regulatory Changes. Current Biology, 21, 700-704.
https://doi.org/10.1016/j.cub.2011.03.028
[53] Hopkins, R. and Rausher, M.D. (2011) Identification of Two Genes Causing Reinforcement in the Texas Wildflower Phlox drummondii. Nature, 469, 411-414.
https://doi.org/10.1038/nature09641
[54] Streisfeld, M.A., Young, W.N. and Sobel, J.M. (2013) Divergent Selection Drives Genetic Differentiation in an R2R3-MYB Transcription Factor That Contributes to Incipient Speciation in Mimulus aurantiacus. PLoS Genetics, 9, e1003385.
https://doi.org/10.1371/journal.pgen.1003385
[55] Yuan, Y.W., Sagawa, J.M., Young, R.C., Christensen, B.J. and Bradshaw Jr., H.D. (2013) Genetic Dissection of a Major Anthocyanin QTL Contributing to Pollinator-Mediated Reproductive Isolation between Sister Species of Mimulus. Genetics, 194, 255-263.
https://doi.org/10.1534/genetics.112.146852
[56] Saito, N., Tatsuzawa, F., Yoda, K., Yokoi, M., Kasahara, K., Iida, S., Shigihara, A. and Honda, T. (1995) Acylated Cyanidin Glycosides in the Violet-Blue Flowers of Ipomoea purpurea. Phytochemistry, 40, 1283-1289.
https://doi.org/10.1016/0031-9422(95)00369-I
[57] Saito, N., Tatsuzawa, F., Yokoi, M., Kasahara, K., Iida, S., Shigihara, A. and Honda, T. (1996) Acylated Pelargonidin Glycosides in Red-Purple Flowers of Ipomoea purpurea. Phytochemistry, 43, 1365-1370.
https://doi.org/10.1016/S0031-9422(96)00501-8
[58] Lu, Y.Q., Du, J., Tang, J.Y., Wang, F., Zhang, J., Huang, J.X., Liang, W.F. and Wang, L.S. (2009) Environmental Regulation of Floral Anthocyanin Synthesis in Ipomoea purpurea. Molecular Ecology, 18, 3857-3871.
https://doi.org/10.1111/j.1365-294X.2009.04288.x
[59] Hoshino, A., Morita, Y., Choi, J.D., Saito, N., Toki, K., Tanaka, Y. and Iida, S. (2003) Spontaneous Mutations of the Flavonoid 3’-Hydroxylase Gene Conferring Reddish Flowers in the Three Morning Glory Species. Plant and Cell Physiology, 44, 990-1001.
https://doi.org/10.1093/pcp/pcg143
[60] Zufall, R.A. and Rausher, M.D. (2003) The Genetic Basis of a Flower Color Polymorphism in the Common Morning Glory (Ipomoea purpurea). Journal of Heredity, 94, 442-448.
https://doi.org/10.1093/jhered/esg098
[61] Hunter, D.A., Fletcher, J.D., Davies, K.M. and Zhang, H. (2011) Colour Break in Reverse Bicolour Daffodils Is Associated with the Presence of Narcissus mosaic virus. Virology Journal, 8, 412.
https://doi.org/10.1186/1743-422X-8-412
[62] Habu, Y., Hisatomi, Y. and Iida, S. (1998) Molecular Characterization of the Mutable Flaked Allele for Flower Variegation in the Common Morning Glory. The Plant Journal, 16, 371-376.
https://doi.org/10.1046/j.1365-313x.1998.00308.x
[63] Abe, Y., Hoshino, A. and Iida, S. (1997) Appearance of Flower Varie-gation in the Mutable Speckled Line of the Japanese Morning Glory Is Controlled by Two Genetic Elements. Genes and Genetic Systems, 72, 57-62.
https://doi.org/10.1266/ggs.72.57
[64] Ohno, S., Hosokawa, M., Hoshino, A., Kitamura, Y., Morita, Y., Park, K.I., Nakashima, A., Deguchi, A., Tatsuzawa, F., Doi, M., Iida, S. and Yazawa, S. (2011) A bHLH Transcription Factor, DvIVS, Is Involved in Regu-lation of Anthocyanin Synthesis in Dahlia (Dahlia variabilis). Journal of Experimental Botany, 62, 5105-5116.
https://doi.org/10.1093/jxb/err216
[65] Saito, R., Fukuta, N., Ohmiya, A., Itoh, Y., Ozeki, Y., Kuchitsu, K. and Nakayama, M. (2006) Regulation of Anthocyanin Biosynthesis Involved in the Formation of Marginal Picotee Petals in Petunia. Plant Science, 170, 828-834.
https://doi.org/10.1016/j.plantsci.2005.12.003
[66] Ohno, S., Hosokawa, M., Kojima, M., Kitamura, Y., Hoshino, A., Tatsuzawa, F., Doi, M. and Yazawa, S. (2011) Simultaneous Post-Transcriptional Gene Silencing of Two Different Chalcone Synthase Genes Resulting in Pure White Flowers in the Octoploid Dahlia. Planta, 234, 945-958.
https://doi.org/10.1007/s00425-011-1456-2
[67] Koseki, M., Goto, K., Masuta, C. and Kanazawa, A. (2005) The Star-Type Color Pattern in Petunia hybrida “Red star” Flowers Is Induced by Sequence-Specific Degradation of Chalcone Synthase RNA. Plant and Cell Physiology, 46, 1879-1883.
https://doi.org/10.1093/pcp/pci192
[68] Schlangen, K., Miosic, S., Castro, A., Freudmann, K., Luczkiewicz, M., Vitzthum, F., Schwab, W., Gamsjäger, S., Musso, M. and Halbwirth, H. (2009) Formation of UV-Honey Guides in Rudbeckia hirta. Phytochemistry, 70, 889-898.
https://doi.org/10.1016/j.phytochem.2009.04.017
[69] Davies, K.M., Albert, N.W. and Schwinn, K.E. (2012) From Landing Lights to Mimicry: The Molecular Regulation of Flower Colouration and Mechanisms for Pigmentation Patterning. Functional Plant Biology, 39, 619-638.
https://doi.org/10.1071/FP12195
[70] Wang, L., Albert, N.W., Zhang, H., Arathoon, S., Boase, M. R., Ngo, H., Schwinn, K.E., Davies, K.M. and Lewis, D.H. (2014) Temporal and Spatial Regulation of Anthocyanin Biosynthesis Provide Diverse Flower Colour Intensities and Patterning in Cymbidium Orchid. Planta, 240, 983-1002.
https://doi.org/10.1007/s00425-014-2152-9
[71] Yamagishi, M. (2016) A Novel R2R3-MYB Transcription Factor Regulates Light-Mediated Floral and Vegetative Anthocyanin Pigmentation Patterns in Lilium regale. Molecular Breeding, 36, 3.
https://doi.org/10.1007/s11032-015-0426-y
[72] Martins, T.R., Berg, J.J., Blinka, S., Rausher, M.D. and Baum, D.A. (2013) Precise Spatio-Temporal Regulation of the Anthocyanin Biosynthetic Pathway Leads to Petal Spot Formation in Clarkia gracilis (Onagraceae). New Phytologist, 197, 958-969.
https://doi.org/10.1111/nph.12062
[73] Hsu, C.C., Chen, Y.Y., Tsai, W.C., Chen, W.H. and Chen, H.H. (2015) Three R2R3-MYB Transcription Factors Regulate Distinct Floral Pigmentation Patterning in Phalae-nopsis spp. Plant Physiology, 168, 175-191.
https://doi.org/10.1104/pp.114.254599
[74] Yamagishi, M. (2013) How Genes Paint Lily Flowers: Regulation of Colouration and Pigmentation Patterning. Scientia Horticulturae, 163, 27-36.
https://doi.org/10.1016/j.scienta.2013.07.024
[75] Zufall, R.A. and Rausher, M.D. (2004) Genetic Changes Associated with Floral Adaptation Restrict Future Evolutionary Potential. Nature, 428, 847-850.
https://doi.org/10.1038/nature02489
[76] Streisfeld, M.A. and Rausher, M.D. (2009) Genetic Changes Contributing to the Parallel Evolution of Red Floral Pigmentation among Ipomoea Species. New Phytologist, 183, 751-763.
https://doi.org/10.1111/j.1469-8137.2009.02929.x
[77] Des Marais, D.L. and Rausher, M.D. (2010) Parallel Evolution at Mul-tiple Levels in the Origin of Hummingbird Pollinated Flowers in Ipomoea. Evolution, 64, 2044-2054.
https://doi.org/10.1111/j.1558-5646.2010.00972.x
[78] Smith, S.D. and Rausher, M.D. (2011) Gene Loss and Parallel Evolution Contribute to Species Difference in Flower Color. Molecular Biology and Evolution, 28, 2799-2810.
https://doi.org/10.1093/molbev/msr109
[79] Smith, S.D., Wang, S. and Rausher, M.D. (2013) Functional Evolution of an An-thocyanin Pathway Enzyme during a Flower Color Transition. Molecular Biology and Evolution, 30, 602-612.
https://doi.org/10.1093/molbev/mss255
[80] Wessinger, C.A. and Rausher, M.D. (2014) Predictability and Irreversibility of Genetic Changes Associated with Flower Color Evolution in Penstemon barbatus. Evolution, 68, 1058-1070.
https://doi.org/10.1111/evo.12340
[81] Wessinger, C.A. and Rausher, M.D. (2015) Ecological Transition Predictably Associated with Gene Degeneration. Molecular Biology and Evolution, 32, 347-354.
https://doi.org/10.1093/molbev/msu298
[82] Snowden, K.C. and Napoli, C.A. (1998) Psl: A Novel Spm-Like Transposable Element from Petunia hybrida. The Plant Journal, 14, 43-54.
https://doi.org/10.1046/j.1365-313X.1998.00098.x
[83] Chen, S., Matsubara, K., Kokubun, H., Kodama, H., Watanabe, H., Marchesi, E. and Ando, T. (2007) Reconstructing Historical Events That Occurred in the Petunia Hf1 Gene, Which Governs Anthocyanin Biosynthesis, and Effects of Artificial Selection by Breeding. Breeding Science, 57, 203-211.
https://doi.org/10.1270/jsbbs.57.203
[84] Nakatsuka, T., Nishihara, M., Mishiba, K., Hirano, H. and Yamamura, S. (2006) Two Different Transposable Elements Inserted in Flavonoid 3’,5’-Hydroxylase Gene Contribute to Pink Flower Coloration in Gentiana scabra. Molecular Genetics and Genomics, 275, 231-241.
https://doi.org/10.1007/s00438-005-0083-7
[85] Ishiguro, K., Taniguchi, M. and Tanaka, Y. (2012) Functional Analysis of Antirrhinum kelloggii Flavonoid 3’-Hydroxylase and Flavonoid 3’,5’-Hydroxylase Genes; Critical Role in Flower Color and Evolution in the Genus Antirrhinum. Journal of Plant Research, 125, 451-456.
https://doi.org/10.1007/s10265-011-0455-5
[86] Takahashi, R., Githiri, S.M., Hatayama, K., Dubouzet, E.G., Shimada, N., Aoki, T., Ayabe, S.I., Iwashina, T., Toda, K. and Matsumura, H. (2007) A Single-Base Deletion in Soybean Flavonol Synthase Gene Is Associated with Magenta Flower Color. Plant Molecular Biology, 63, 125-135.
https://doi.org/10.1007/s11103-006-9077-z
[87] Wessinger, C.A. and Rausher, M.D. (2012) Lessons from Flower Colour Evo-lution on Targets of Selection. Journal of Experimental Botany, 63, 5741-5749.
https://doi.org/10.1093/jxb/ers267
[88] Streisfeld, M.A. and Rausher, M.D. (2010) Population Genetics, Pleiotropy, and the Preferential Fixation of Mutations during Adaptive Evolution. Evolution, 65, 629-642.
https://doi.org/10.1111/j.1558-5646.2010.01165.x
[89] Inagaki, Y., Hisatomi, Y., Suzuki, T., Kasahara, K. and Iida, S. (1994) Isolation of a Suppressor-mutator/Enhancer- Like Transposable Element, Tpn1, from Japanese Morning Glory Bearing Variegated Flowers. The Plant Cell, 6, 375- 383.
https://doi.org/10.1105/tpc.6.3.375
[90] Clegg, M.T. and Durbin, M.L. (2000) Flower Color Variation: A Model for the Experimental Study of Evolution. Proceedings of the National Academy of Sciences of the United States of America, 97, 7016-7023.
https://doi.org/10.1073/pnas.97.13.7016
[91] Iida, S., Morita, Y., Choi, J.D., Park, K.I. and Hoshino, A. (2004) Genetics and Epigenetics in Flower Pigmentation Associated with Transposable Elements in Morning Glories. Advances in Biophysics, 38, 141-159.
https://doi.org/10.1016/S0065-227X(04)80136-9
[92] Sobel, J.M. and Streisfeld, M.A. (2013) Flower Color as a Model System for Studies of Plant Evo-Devo. Frontiers in Plant Science, 4, 321.
https://doi.org/10.3389/fpls.2013.00321
[93] Coberly, L.C. and Rausher, M.D. (2003) Analysis of a Chalcone Synthase Mutant in Ipomoea purpurea Reveals a Novel Function for Flavonoids: Amelioration of Heat Stress. Molecular Ecology, 12, 1113-1124.
https://doi.org/10.1046/j.1365-294X.2003.01786.x
[94] Coberly, L.C. and Rausher, M.D. (2008) Pleiotropic Effects of an Allele Producing White Flowers in Ipomoea purpurea. Evolution, 62, 1076-1085.
https://doi.org/10.1111/j.1558-5646.2008.00355.x
[95] Dick, C.A., Buenrostro, J., Butler, T., Carlson, M.L., Kliebenstein, D.J. and Whittall, J.B. (2011) Arctic Mustard Flower Color Polymorphism Controlled by Petal-Specific Downregulation at the Threshold of the Anthocyanin Biosynthetic Pathway. PLoS ONE, 6, e18230.
https://doi.org/10.1371/journal.pone.0018230
[96] Nishihara, M., Yamada, E., Saito, M., Fujita, K., Takahashi, H. and Nakatsuka, T. (2014) Molecular Characterization of Mutations in White-Flowered Torenia Plants. BMC Plant Biology, 14, 86.
https://doi.org/10.1186/1471-2229-14-86
[97] Quattrocchio, F., Wing, J., van der Woude, K., Souer, E., de Vetten, N., Mol, J. and Koes, R. (1999) Molecular Analysis of the anthocyanin2 Gene of Petunia and Its Role in the Evolution of Flower Color. The Plant Cell, 11, 1433-1444.
https://doi.org/10.1105/tpc.11.8.1433
[98] Chang, S.M., Lu, Y.Q. and Rausher, M.D. (2005) Neutral Evolution of the Non-binding Region of the Anthocyanin Regulatory Gene Ipmyb1 in Ipomoea. Genetics, 170, 1967-1978.
https://doi.org/10.1534/genetics.104.034975
[99] Morita, Y., Saitoh, M., Hoshino, A., Nitasaka, E. and Iida, S. (2006) Isolation of cDNAs for R2R3-MYB, bHLH and WDR Transcriptional Regulators and Identification of c and ca Mutations Conferring White Flowers in the Japanese Morning Glory. Plant and Cell Physiology, 47, 457-470.
https://doi.org/10.1093/pcp/pcj012
[100] Whittall, J.B., Voelckel, C., Kliebenstein, D.J. and Hodges, S.A. (2006) Convergence, Constraint and the Role of Gene Expression during Adaptive Radiation: Floral Anthocyanins in Aquilegia. Molecular Ecology, 15, 4645-4657.
https://doi.org/10.1111/j.1365-294X.2006.03114.x
[101] Yamagishi, M. (2011) Oriental Hybrid Lily Sorbonne Homologue of LhMYB12 Regulates Anthocyanin Biosyntheses in Flower Tepals and Tepal Spots. Molecular Breeding, 28, 381-389.
https://doi.org/10.1007/s11032-010-9490-5
[102] Nishijima, T., Morita, Y., Sasaki, K., Nakayama, M., Yamaguchi, H., Ohtsubo, N., Niki, T. and Niki, T. (2013) A Torenia (Torenia fournieri Lind. ex Fourn.) Novel Mutant “Flecked” Produces Variegated Flowers by Insertion of a DNA Transposon into an R2R3-MYB Gene. Journal of the Japanese Society for Horticultural Science, 82, 39-50.
https://doi.org/10.2503/jjshs1.82.39
[103] Yuan, Y.W., Sagawa, J.M., Frost, L., Vela, J.P. and Bradshaw Jr., H.D. (2014) Tran-scriptional Control of Floral Anthocyanin Pigmentation in Monkeyflowers (Mimulus). New Phytologist, 204, 1013-1027.
https://doi.org/10.1111/nph.12968
[104] Park, K.I., Choi, J.D., Hoshino, A., Morita, Y. and Iida, S. (2004) An Intragenic Tandem Duplication in a Transcriptional Regulatory Gene for Anthocyanin Biosynthesis Confers Pale-Colored Flowers and Seeds with Fine Spots in Ipomoea tricolor. The Plant Journal, 38, 840-849.
https://doi.org/10.1111/j.1365-313X.2004.02098.x
[105] Park, K.I., Ishikawa, N., Morita, Y., Choi, J.D., Hoshino, A. and Iida, S. (2007) A bHLH Regulatory Gene in the Common Morning Glory, Ipomoea purpurea, Controls Anthocyanin Biosynthesis in Flowers, Proanthocyanidin and Phytomelanin Pigmentation in Seeds, and Seed Trichome Formation. The Plant Journal, 49, 641-654.
https://doi.org/10.1111/j.1365-313X.2006.02988.x
[106] Albert, N.W., Lewis, D.H., Zhang, H., Schwinn, K.E., Jameson, P.E. and Davies, K.M. (2011) Members of an R2R3-MYB Transcription Factor Family in Petunia Are Developmentally and Environ-mentally Regulated to Control Complex Floral and Vegetative Pigmentation Patterning. The Plant Journal, 65, 771-784.
https://doi.org/10.1111/j.1365-313X.2010.04465.x
[107] Albert, N.W., Griffiths, A.G., Cousins, G.R., Verry, I.M. and Williams, W.M. (2015) Anthocyanin Leaf Markings Are Regulated by a Family of R2R3-MYB Genes in the Genus Trifolium. New Phytologist, 205, 882-893.
https://doi.org/10.1111/nph.13100
[108] Rausher, M.D., Miller, R.E. and Tiffin, P. (1999) Patterns of Evolutionary Rate Variation Among Genes of the Anthocyanin Biosynthetic Pathway. Molecular Biology and Evolution, 16, 266-274.
https://doi.org/10.1093/oxfordjournals.molbev.a026108
[109] Lu, Y.Q. and Rausher, M.D. (2003) Evolutionary Rate Variation in Anthocyanin Pathway Genes. Molecular Biology and Evolution, 20, 1844-1853.
https://doi.org/10.1093/molbev/msg197
[110] Streisfeld, M.A. and Rausher, M.D. (2007) Relaxed Constraint and Evolutionary Rate Variation between Basic Helix- Loop-Helix Floral Anthocyanin Regulators in Ipomoea. Molecular Biology and Evolution, 24, 2816-2826.
https://doi.org/10.1093/molbev/msm216
[111] Streisfeld, M.A., Liu, D. and Rausher, M.D. (2011) Predictable Patterns of Con-straint among Anthocyanin-Regulating Transcription Factors in Ipomoea. New Phytologist, 191, 264-274.
https://doi.org/10.1111/j.1469-8137.2011.03671.x
[112] Yamagishi, M., Yoshida, Y. and Nakayama, M. (2012) The Transcription Factor LhMYB12 Determines Anthocyanin Pigmentation in the Tepals of Asiatic Hybrid Lilies (Lilium spp.) and Regulates Pigment Quantity. Molecular Breeding, 30, 913-925.
https://doi.org/10.1007/s11032-011-9675-6
[113] Hopkins, R. and Rausher, M.D. (2012) Pollinator-Mediated Selection on Flower Color Allele Drives Reinforcement. Science, 335, 1090-1092.
https://doi.org/10.1126/science.1215198
[114] Tateishi, N., Ozaki, Y. and Okubo, H. (2010) White Marginal Picotee Formation in the Petals of Camellia japonica “Tamanoura”. Journal of the Japanese Society for Horticultural Science, 79, 207-214.
https://doi.org/10.2503/jjshs1.79.207
[115] Kanazawa, A., Inaba, J.-I., Shimura, H., Otagaki, S., Tsukahara, S., Matsuzawa, A., Kim, B.M., Goto, K. and Masuta, C. (2011) Virus-Mediated Efficient Induction of Epigenetic Modifications of Endogenous Genes with Phenotypic Changes in Plants. The Plant Journal, 65, 156-168.
https://doi.org/10.1111/j.1365-313X.2010.04401.x
[116] Morita, Y., Saito, R., Ban, Y., Tanikawa, N., Kuchitsu, K., Ando, T., Yoshikawa, M., Habu, Y., Ozeki, Y. and Nakayama, M. (2012) Tandemly Arranged chalcone synthase A Genes Contribute to the Spatially Regulated Expression of siRNA and the Natural Bicolor Floral Phenotype in Petunia hybrida. The Plant Journal, 70, 739-749.
https://doi.org/10.1111/j.1365-313X.2012.04908.x
[117] Durbin, M.L., McCaig, B. and Clegg, M.T. (2000) Molecular Evolution of the Chalcone Synthase Multigene Family in the Morning Glory Genome. Plant Molecular Biology, 42, 79-92.
https://doi.org/10.1023/a:1006375904820
[118] Clegg, M.T. and Durbin, M.L. (2003) Tracing Floral Adaptations from Ecology to Molecules. Nature Reviews Genetics, 4, 206-215.
https://doi.org/10.1038/nrg1023
[119] Durbin, M.L., Lundy, K.E., Morrell, P.L., Torres-Martinez, C.L. and Clegg, M.T. (2003) Genes that Determine Flower Color: The Role of Regulatory Changes in the Evolution of Phenotypic Adaptations. Molecular Phylogenetics and Evolution, 29, 507-518.
https://doi.org/10.1016/S1055-7903(03)00196-9
[120] Glover, B.J., Walker, R.H., Moyroud, E. and Brockington, S.F. (2013) How to Spot a Flower. New Phytologist, 197, 687-689.
https://doi.org/10.1111/nph.12112
[121] Zhang, Y., Cheng, Y., Ya, H., Xu, S. and Han, J. (2015) Transcriptome Sequencing of Purple Petal Spot Region in Tree Peony Reveals Differentially Expressed Anthocyanin Structural Genes. Frontiers in Plant Science, 6, 964.
https://doi.org/10.3389/fpls.2015.00964
[122] Li, Q., Wang, J., Sun, H.Y. and Shang, X. (2014) Flower Color Patterning in Pansy (Viola × wittrockiana Gams.) Is Caused by the Differential Expression of Three Genes from the Anthocyanin Pathway in Acyanic and Cyanic Flower Areas. Plant Physiology and Biochemistry, 84, 134-141.
https://doi.org/10.1016/j.plaphy.2014.09.012
[123] Yamagishi, M., Shimoyamada, Y., Nakatsuka, T. and Masuda, K. (2010) Two R2R3-MYB Genes, Homologs of Petunia AN2, Regulate Anthocyanin Biosyntheses in Flower Tepals, Tepal Spots and Leaves of Asiatic Hybrid Lily. Plant and Cell Physiology, 51, 463-474.
https://doi.org/10.1093/pcp/pcq011
[124] Shang, Y., Venail, J., Mackay, S., Bailey, P.C., Schwinn, K.E., Jameson, P.E., Martin, C.R. and Davies, K.M. (2011) The Molecular Basis for Venation Patterning of Pigmentation and Its Effect on Pollinator Attraction in Flowers of Antirrhinum. New Phytologist, 189, 602-615.
https://doi.org/10.1111/j.1469-8137.2010.03498.x
[125] Telias, A., Lin-Wang, K., Stevenson, D.E., Cooney, J.M., Hellens, R.P., Allan, A.C., Hoover, E.E. and Bradeen, J.M. (2011) Apple Skin Patterning Is Associated with Differential Expression of MYB10. BMC Plant Biology, 11, 93.
https://doi.org/10.1186/1471-2229-11-93
[126] Yamagishi, M., Toda, S. and Tasaki, K. (2014) The Novel Allele of the LhMYB12 Gene Is Involved in Splatter-Type Spot Formation on the Flower Tepals of Asiatic Hybrid Lilies (Lilium spp.). New Phytologist, 201, 1009-1020.
https://doi.org/10.1111/nph.12572
[127] Matsui, K., Umemura, Y. and Ohme-Takagi, M. (2008) AtMYBL2, a Protein with a Single MYB Domain, Acts as a Negative Regulator of Anthocyanin Biosynthesis in Arabidopsis. The Plant Journal, 55, 954-967.
https://doi.org/10.1111/j.1365-313X.2008.03565.x
[128] Albert, N.W., Davies, K.M., Lewis, D.H., Zhang, H.B., Montefiori, M., Brendolise, C., Boase, M.R., Ngo, H., Jameson, P.E. and Schwinn, K.E. (2014) A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin Pigmentation in Eudicots. The Plant Cell, 26, 962-980.
https://doi.org/10.1105/tpc.113.122069
[129] Shoji, K., Miki, N., Nakajima, N., Momonoi, K., Kato, C. and Yoshida, K. (2007) Perianth Bottom-Specific Blue Color Development in Tulip cv. Murasakizuisho Requires Ferric Ions. Plant and Cell Physiology, 48, 243-251.
https://doi.org/10.1093/pcp/pcl060
[130] Kay, K.M., Reeves, P.A., Olmstead, R.G. and Schemske, D.W. (2005) Rapid Speciation and the Evolution of Hummingbird Pollination in Neotropical Costus Subgenus Costus (Costaceae): Evidence from nrDNA ITS and ETS Sequences. American Journal of Botany, 92, 1899-1910.
https://doi.org/10.3732/ajb.92.11.1899
[131] Whittall, J.B. and Hodges, S.A. (2007) Pollinator Shifts Drive Increasingly Long Nectar Spurs in Columbine Flowers. Nature, 447, 706-709.
https://doi.org/10.1038/nature05857
[132] Rausher, M.D. (2008) Evolutionary Transitions in Floral Color. International Journal of Plant Sciences, 169, 7-21.
https://doi.org/10.1086/523358
[133] Smith, S.D. and Goldberg, E.E. (2015) Tempo and Mode of Flower Color Evolution. American Journal of Botany, 102, 1014-1025.
https://doi.org/10.3732/ajb.1500163
[134] Perret, M., Chautems, A., Spichiger, R., Kite, G. and Savolainen, V. (2003) Systematics and Evolution of Tribe Sinningieae (Gesneriaceae): Evidence from Phylogenetic Analyses of Six Plastid DNA Regions and Nuclear ncpGS. American Journal of Botany, 90, 445-460.
https://doi.org/10.3732/ajb.90.3.445
[135] Armbruster, W.S. (2002) Can Indirect Selection and Genetic Context Contribute to Trait Diversification? A Transition- Probability Study of Blossom-Colour Evolution in Two Genera. Journal of Evolutionary Biology, 15, 468-486.
https://doi.org/10.1046/j.1420-9101.2002.00399.x
[136] Thomson, J.D. and Wilson, P. (2008) Explaining Evolutionary Shifts between Bee and Hummingbird Pollination: Convergence, Divergence, and Directionality. International Journal of Plant Sciences, 169, 23-38.
https://doi.org/10.1086/523361
[137] Schemske, D.W. and Bradshaw, H.D. (1999) Pollinator Preference and the Evolution of Floral Traits in Monkeyflowers (Mimulus). Proceedings of the National Academy of Sciences of the United States of America, 96, 11910-11915.
https://doi.org/10.1073/pnas.96.21.11910
[138] Bradshaw, H.D. and Schemske, D.W. (2003) Allele Substitution at a Flower Colour Locus Produces a Pollinator Shift in Monkeyflowers. Nature, 426, 176-178.
https://doi.org/10.1038/nature02106
[139] Streisfeld, M.A. and Kohn, J.R. (2007) Environment and Pollinator-Mediated Selection on Parapatric Floral Races of Mimulus aurantiacus. Journal of Evolutionary Biology, 20, 122-132.
https://doi.org/10.1111/j.1420-9101.2006.01216.x
[140] Hoballah, M.E., Gübitz, T., Stuurman, J., Broger, L., Barone, M., Mandel, T., Dell’Olivo, A., Arnold, M. and Kuhlemeier, C. (2007) Single Gene-Mediated Shift in Pollinator Attraction in Petunia. The Plant Cell, 19, 779-790.
https://doi.org/10.1105/tpc.106.048694
[141] Melendez-Ackerman, E. and Campbell, D.R. (1998) Adaptive Significance of Flower Color and Inter-Trait Correlations in an Ipomopsis Hybrid Zone. Evolution, 52, 1293-1303.
https://doi.org/10.2307/2411299
[142] Bischoff, M., Raguso, R.A., Jurgens, A. and Campbell, D.R. (2015) Context-Dependent Reproductive Isolation Mediated by Floral Scent and Color. Evolution, 69, 1-13.
https://doi.org/10.1111/evo.12558
[143] Hopkins, R. and Rausher, M.D. (2014) The Cost of Reinforcement: Selection on Flower Color in Allopatric Populations of Phlox drummondii. The American Naturalist, 183, 693-710.
https://doi.org/10.1086/675495
[144] Caruso, C.M., Scott, S.L., Wray, J.C. and Walsh, C.A. (2010) Pollinators, Herbivores, and the Maintenance of Flower Color Variation: A Case Study with Lobelia siphilitica. International Journal of Plant Sciences, 171, 1020-1028.
https://doi.org/10.1086/656511
[145] Renoult, J.P., Thomann, M., Schaefer, H.M. and Cheptou, P.O. (2013) Selection on Quan-titative Colour Variation in Centaurea cyanus: The Role of the Pollinator’s Visual System. Journal of Evolutionary Biology, 26, 2415-2427.
https://doi.org/10.1111/jeb.12234
[146] Sletvold, N., Trunschke, J., Smit, M., Verbeek, J. and Ågren, J. (2016) Strong Pollina-tor-Mediated Selection for Increased Flower Brightness and Contrast in a Deceptive Orchid. Evolution, 70, 716-724.
https://doi.org/10.1111/evo.12881
[147] Waser, N.M. and Price, M.V. (1985) The Effect of Nectar Guides on Pollinator Prefe-rence: Experimental Studies with a Montane Herb. Oecologia, 67, 121-126.
https://doi.org/10.1007/BF00378462
[148] Johnson, S.D. and Dafni, A. (1998) Response of Bee-Flies to the Shape and Pattern of Model Flowers: Implications for Floral Evolution in a Mediterranean Herb. Functional Ecology, 12, 289-297.
https://doi.org/10.1046/j.1365-2435.1998.00175.x
[149] van Kleunen, M., Nänni, I., Donaldson, J.S. and Manning, J.C. (2007) The Role of Beetle Marks and Flower Colour on Visitation by Monkey Beetles (Hopliini) in the Greater Cape Floral Region, South Africa. Annals of Botany, 100, 1483-1489.
https://doi.org/10.1093/aob/mcm256
[150] Medel, R., Botto-Mahan, C. and Ka-lin-Arroyo, M. (2003) Pollinator-Mediated Selection on the Nectar Guide Phenotype in the Andean Monkey Flower, Mimulus luteus. Ecology, 84, 1721-1732.
https://doi.org/10.1890/01-0688
[151] Hansen, D.M., Van der Niet, T. and Johnson, S.D. (2012) Floral Signposts: Testing the Significance of Visual “Nectar Guides” for Pollinator Behaviour and Plant Fitness. Proceedings of the Royal Society B-Biological Sciences, 279, 634- 639.
https://doi.org/10.1098/rspb.2011.1349
[152] de Jager, M.L. and Ellis, A.G. (2014) Floral Polymorphism and the Fitness Implications of Attracting Pollinating and Florivorous Insects. Annals of Botany, 113, 213-222.
https://doi.org/10.1093/aob/mct189
[153] Jones, K.N. and Reithel, J.S. (2001) Pollinator-Mediated Selection on a Flower Color Polymorphism in Experimental Populations of Antirrhinum (Scrophulariaceae). American Journal of Botany, 88, 447-454.
https://doi.org/10.2307/2657109
[154] Parachnowitsch, A.L. and Kessler, A. (2010) Pollinators Exert Natural Selection on Flower Size and Floral Display in Penstemon digitalis. New Phytologist, 188, 393-402.
https://doi.org/10.1111/j.1469-8137.2010.03410.x
[155] Campbell, D.R. and Bischoff, M. (2013) Selection for a Floral Trait Is Not Mediated by Pollen Receipt Even though Seed Set in the Population Is Pollen-Limited. Functional Ecology, 27, 1117-1125.
https://doi.org/10.1111/1365-2435.12131
[156] Lavi, R. and Sapir, Y. (2015) Are Pollinators the Agents of Selection for the Extreme Large Size and Dark Color in Oncocyclus Irises? New Phytologist, 205, 369-377.
https://doi.org/10.1111/nph.12982
[157] Miller, R.B. (1981) Hawkmoths and the Geographic Patterns of Floral Variation in Aquilegia caerulea. Evolution, 35, 763-774.
https://doi.org/10.2307/2408246
[158] Brunet, J. (2009) Pollinators of the Rocky Mountain Columbine: Temporal Variation, Functional Groups and Associations with Floral Traits. Annals of Botany, 103, 1567-1578.
https://doi.org/10.1093/aob/mcp096
[159] Grossenbacher, D.L. and Stanton, M.L. (2014) Pollinator-Mediated Competition In-fluences Selection for Flower-Color Displacement in Sympatric Monkeyflowers. American Journal of Botany, 101, 1915-1924.
https://doi.org/10.3732/ajb.1400204
[160] Levin, D.A. (1970) The Exploitation of Pollinators by Species and Hybrids of Phlox. Evolution, 24, 367-377.
https://doi.org/10.2307/2406811
[161] Levin, D.A. (1985) Reproductive Character Displacement in Phlox. Evolution, 39, 1275-1281.
https://doi.org/10.2307/2408784
[162] Muchhala, N., Johnsen, S. and Smith, S.D. (2014) Competition for Hummingbird Pollina-tion Shapes Flower Color Variation in Andean Solanaceae. Evolution, 68, 2275-2286.
https://doi.org/10.1111/evo.12441
[163] Waser, N.M. and Price, M.V. (1981) Pollinator Choice and Stabilizing Selection for Flower Color in Delphinium nelsonii. Evolution, 35, 376-390.
https://doi.org/10.2307/2407846
[164] Jones, K.N. (1996) Pollinator Behavior and Post-Pollination Reproductive Success in Alternative Floral Phenotypes of Clarkia gracilis (Onagraceae). International Journal of Plant Sciences, 157, 593-599.
https://doi.org/10.1086/297396
[165] Frey, F.M. (2004) Opposing Natural Selection from Herbivores and Pathogens May Maintain Floral-Color Variation in Claytonia virginica (Portulacaceae). Evolution, 58, 2426-2437.
https://doi.org/10.1111/j.0014-3820.2004.tb00872.x
[166] Frey, F.M., Dunton, J. and Garland, K. (2011) Floral Color Variation and Associations with fitness-Related Traits in Malva moschata (Malvaceae). Plant Species Biology, 26, 235-243.
https://doi.org/10.1111/j.1442-1984.2011.00325.x
[167] Tastard, E., Ferdy, J.B., Burrus, M., Thebaud, C. and Andalo, C. (2012) Patterns of Floral Colour Neighbourhood and Their Effects on Female Reproductive Success in an Antirrhinum Hybrid Zone. Journal of Evolutionary Biology, 25, 388-399.
https://doi.org/10.1111/j.1420-9101.2011.02433.x
[168] Arista, M., Talavera, M., Berjano, R. and Ortiz, P.L. (2013) Abiotic Factors May Explain the Geographical Distribution of Flower Colour Morphs and the Maintenance of Colour Polymorphism in the Scarlet Pimpernel. Journal of Ecology, 101, 1613-1622.
https://doi.org/10.1111/1365-2745.12151
[169] Joseph, N. and Siril, E.A. (2013) Floral Color Polymorphism and Reproductive Success in Annatto (Bixa orellana L.). Tropical Plant Biology, 6, 217-227.
https://doi.org/10.1007/s12042-013-9128-y
[170] Ortiz, P.L., Berjano, R., Talavera, M., Rodriguez-Zayas, L. and Arista, M. (2015) Flower Colour Polymorphism in Lysimachia arvensis: How Is the Red Morph Maintained in Mediterranean Environments? Perspectives in Plant Ecology, Evolution and Systematics, 17, 142-150.
https://doi.org/10.1016/j.ppees.2015.01.004
[171] Sobral, M., Veiga, T., Dominguez, P., Guitian, J.A., Guitian, P. and Guitian, J.M. (2015) Selective Pressures Explain Differences in Flower Color among Gentiana lutea Populations. PLoS ONE, 10, e0132522.
https://doi.org/10.1371/journal.pone.0132522
[172] Veiga, T., Guitian, J., Guitian, P., Guitian, J. and Sobral, M. (2015) Are Pollinators and Seed Predators Selective Agents on Flower Color in Gentiana lutea? Evolutionary Ecology, 29, 451-464.
https://doi.org/10.1007/s10682-014-9751-6
[173] Fry, J.D. and Rausher, M.D. (1997) Selection on a Floral Color Polymorphism in the Tall Morning Glory (Ipomoea purpurea): Transmission Success of the Alleles through Pollen. Evolution, 51, 66-78.
https://doi.org/10.2307/2410961
[174] Mojonnier, L.E. and Rausher, M.D. (1997) Selection on a Floral Color Polymorphism in the Common Morning Glory (Ipomoea purpurea): The Effects of Overdominance in Seed Size. Evolution, 51, 608-614.
https://doi.org/10.2307/2411133
[175] Malerba, R. and Nattero, J. (2012) Pollinator Response to Flower Color Polymorphism and Floral Display in a Plant with a Single-Locus Floral Color Polymorphism: Consequences for Plant Reproduction. Ecological Research, 27, 377-385.
https://doi.org/10.1007/s11284-011-0908-2
[176] Takahashi, Y., Takakura, K. and Kawata, M. (2015) Flower Color Polymorphism Maintained by Overdominant Selection in Sisyrinchium sp. Journal of Plant Research, 128, 933-939.
https://doi.org/10.1007/s10265-015-0750-7
[177] Epperson, B.K. and Clegg, M.T. (1987) Frequency-Dependent Variation for Outcrossing Rate among Flower-Color Morphs of Ipomoea purpurea. Evolution, 41, 1302-1311.
https://doi.org/10.2307/2409095
[178] Rausher, M.D., Augustine, D. and Vanderkooi, A. (1993) Absence of Pollen Discounting in a Genotype of Ipomoea purpurea Exhibiting Increased Selfing. Evolution, 47, 1688-1695.
https://doi.org/10.2307/2410213
[179] Rausher, M.D. and Fry, J.D. (1993) Effects of a Locus Affecting Floral Pigmentation in Ipomoea purpurea on Female Fitness Components. Genetics, 134, 1237-1247.
[180] Strauss, S.Y. and Whittall, J.B. (2006) Non-Pollinator Agents of Selection on Floral Traits. In: Harder, L.D. and Barrett, S.C.H., Eds., Ecology and Evolution of Flowers, Oxford University Press, Oxford, 120-138.
[181] Johnson, M.T.J., Campbell, S.A. and Barrett, S.C.H. (2015) Evolutionary Interac-tions between Plant Reproduction and Defense against Herbivores. Annual Review of Ecology, Evolution, and Systematics, 46, 191-213.
https://doi.org/10.1146/annurev-ecolsys-112414-054215
[182] Fenster, C.B., Armbruster, W.S., Wilson, P., Dudash, M.R. and Thomson, J.D. (2004) Pollination Syndromes and Floral Specialization. Annual Review of Ecology Evolution and Systematics, 35, 375-403.
https://doi.org/10.1146/annurev.ecolsys.34.011802.132347
[183] Kaczorowski, R.L., Gardener, M.C. and Holtsford, T.P. (2005) Nectar Traits in Nicotiana Section Alatae (Solanaceae) in Relation to Floral Traits, Pollinators, and Mating System. American Journal of Botany, 92, 1270-1283.
https://doi.org/10.3732/ajb.92.8.1270
[184] Frey, F.M. (2007) Phenotypic Integration and the Potential for Independent Color Evolution in a Polymorphic Spring Ephemeral. American Journal of Botany, 94, 437-444.
https://doi.org/10.3732/ajb.94.3.437
[185] Wessinger, C.A., Hileman, L.C. and Rausher, M.D. (2014) Identification of Major Quantitative Trait Loci Underlying Floral Pollination Syndrome Divergence in Penstemon. Philosophical Transactions of the Royal Society B-Biological Sciences, 369, Article ID: 20130349.
https://doi.org/10.1098/rstb.2013.0349
[186] Smith, S.D. (2016) Plei-otropy and the Evolution of Floral Integration. New Phytologist, 209, 80-85.
https://doi.org/10.1111/nph.13583
[187] Kingsolver, J.G., Hoekstra, H.E., Hoekstra, J.M., Berrigan, D., Vignieri, S.N., Hill, C.E., Hoang, A., Gibert, P. and Beerli, P. (2001) The Strength of Phenotypic Selection in Natural Populations. The American Naturalist, 157, 245-261.
https://doi.org/10.1086/319193
[188] Levin, D.A. and Brack, E.T. (1995) Natural-Selection against White Petals in Phlox. Evo-lution, 49, 1017-1022.
https://doi.org/10.2307/2410423
[189] Fehr, C. and Rausher, M.D. (2004) Effects of Variation at the Flower-Colour A Locus on Mating System Parameters in Ipomoea purpurea. Molecular Ecology, 13, 1839-1847.
https://doi.org/10.1111/j.1365-294X.2004.02182.x
[190] Schemske, D.W. and Bierzychudek, P. (2001) Perspective: Evolution of Flower Color in the Desert Annual Linanthus parryae: Wright Revisited. Evolution, 55, 1269-1282.
https://doi.org/10.1111/j.0014-3820.2001.tb00650.x
[191] Jones, K.N. (1996) Fertility Selection on a Discrete Floral Polymor-phism in Clarkia (Onagraceae). Evolution, 50, 71-79.
https://doi.org/10.2307/2410781