Sc掺杂M型钡铁氧体烧结过程中的相变及磁性研究
Phase Transition and Magnetic Properties in the Forming Process of Sc Doped M-Type Hexaferrite
DOI: 10.12677/APP.2016.611033, PDF, HTML, XML, 下载: 1,963  浏览: 4,448  国家自然科学基金支持
作者: 周 浩, 汤如俊*:苏州大学,物理与光电?能源学部,江苏省薄膜材料重点实验室,江苏 苏州
关键词: M型铁氧体Sc3+掺杂烧结温度相变磁性质M-Type Hexaferrite Sc3+ Substitution Sintering Temperature Phase Transition Magnetic Property
摘要: 本文采用固相反应法制备了掺杂M型钡铁氧体BaFe10.2Sc1.8O19,并对其在烧结过程中的相变及磁性质做了一定的研究。结果表明,当烧结温度低于1000℃时,尖晶石相BaFe2O4和铁离子缺失的M型铁氧体是主要的烧结产物。当烧结温度高于1050℃时,M型铁氧体BaFe10.2Sc1.8O19开始生成。直到当烧结温度达到1200℃时,BaFe10.2Sc1.8O19才以单相的形式存在于烧结产物中。随着烧结温度的升高,烧结产物的剩磁比和矫顽场逐步降低,并在烧结温度高于1200℃的时候降到接近于零。饱和磁化强度随着烧结温度的升高逐步升高,并在1050℃的时候达到最大值,随后逐渐降低。磁性质的变化过程与烧结产物的相变是一致的。以上结果表明,相对于Fe3+,Sc3+对M型铁氧体的掺杂需要更高的热能,并会导致M型铁氧体磁性质的较大变化。
Abstract: Sc doped M-type hexaferrite BaFe10.2Sc1.8O19 was prepared with the conventional solid state reaction method. The phase and magnetic property transition processes in the sintering process of M-type hexaferrite BaFe10.2Sc1.8O19 have been investigated. Results show that the spinel phase BaFe2O4 and ion-deficient M-type hexaferrite dominate when sintering temperature is lower than 1000˚C. The M-type hexaferrite BaFe10.2Sc1.8O19 appears above 1050˚C and does not become a single phase until 1200˚C. Both the remanence ratio and coercivity of the samples decrease with increasing sintering temperature and drop to nearly zero above 1200˚C. However, the saturation magnetization of the samples increases with increasing sintering temperature until 1050˚C and then decreases. The magnetic property transition process agrees well with the phase transition process. The above results show that incorporation of Sc3+ into the M-type hexaferrite needs a higher thermal energy than that of Fe3+, and will lead to a drastic change in the magnetic properties of M-type hexaferrite.
文章引用:周浩, 汤如俊. Sc掺杂M型钡铁氧体烧结过程中的相变及磁性研究[J]. 应用物理, 2016, 6(11): 265-271. http://dx.doi.org/10.12677/APP.2016.611033

参考文献

[1] Went, J.J., Rathenau, G.W., Gorter, E.W., et al. (1952) Ferroxdure, A Class of New Permanent Magnet Materials. Philips Technical Review, 13, 194.
[2] Smit, J. and Wijn, H.P.J. (1959) Ferrites. Philips Technical Library, Eindhoven, The Netherlands.
[3] Guan, Y.J., Lin, Y.B., Zou, L.Y., et al. (2013) The Effects of Co-Ti Co-Doping on the Magnetic, Electrical, and Magnetodielectric Behaviors of M-Type Barium Hexaferrites. AIP Advances, 3, 122115.
https://doi.org/10.1063/1.4860948
[4] Sugimoto, M. (1999) The Past, Present, and Future of Ferrites. Journal of the American Ceramic Society, 82, 269-280.
https://doi.org/10.1111/j.1551-2916.1999.tb20058.x
[5] Harris, V.G., Chen, Z.H., Chen, Y.J., et al. (2006) Ba-Hexaferrite Films for Next Generation Microwave Devices. ChemInform, 37.
https://doi.org/10.1002/chin.200637192
[6] Xu, P., Han, X. and Wang, M. (2007) Synthesis and Magnetic Properties of BaFe12O19 Hexaferrite Nanoparticles by a Reverse microemulsion Technique. The Journal of Physical Chemistry C, 111, 5866-5870.
https://doi.org/10.1021/jp068955c
[7] Harris, V.G., Geiler, A., Chen, Y.J., et al. (2009) Recent Advances in Processing and Applications of Microwave Ferrites. Journal of Magnetism and Magnetic Materials, 321, 2035-2047.
https://doi.org/10.1016/j.jmmm.2009.01.004
[8] Van Uitert, L.G. and Swanekamp, F.W. (1957) Permanent Magnet Oxides Containing Divalent Metal Ions. II. Journal of Applied Physics, 28, 482.
https://doi.org/10.1063/1.1722776
[9] Mones, A.H. and Banks, E. (1958) Cation Substitutions in BaFe12O19. Journal of Physics and Chemistry of Solids, 4, 217-222.
https://doi.org/10.1016/0022-3697(58)90119-7
[10] Haneda, K. and Kojima, H. (1973) Magnetization Reversal Process in Chemically Precipitated and Ordinary Prepared BaFe12O19. Japanese Journal of Applied Physics, 12, 355.
https://doi.org/10.1143/JJAP.12.355
[11] Batlle, X., Obradors, X., Rodríguez-Carvajal, J., et al. (1991) Cation Distribution and Intrinsic Magnetic Properties of Co-Ti-Doped M-Type Barium Ferrite. Journal of Applied Physics, 70, 1614-1623.
[12] Cho, H.-S. and Kim, S.-S. (1999) M-Hexaferrites with Planar Magnetic Anisotropy and Their Application to High- Frequency Microwave Absorbers. IEEE Transactions on Magnetics, 35, 3151-3153.
[13] Albanese, G. and Deriu, A. (1979) Magnetic properties of Al, Ga, Sc, In Substituted Barium Ferrites: A Comparative Analysis. Ceramurgia International, 5, 3-10.
https://doi.org/10.1016/0390-5519(79)90002-4
[14] Kakizaki, K., Hiratsuka, N. and Namikawa, T. (1997) Fine Structure of Acicular BaCoxTixFe12-2xO19 Particles and Their Magnetic Properties. Journal of Magnetism and Magnetic Materials, 176, 36-40.
https://doi.org/10.1016/S0304-8853(97)00634-3
[15] Perekalina, T.M. and Cheparin, V.P. (1968) Ferrimag-netism of Hexagonal Ferrites. Soviet Physics: Solid State, 9, 2524.
[16] Mallick, K.K., Shepherd, P. and Green, R.J. (2007) Magnetic Properties of Cobalt Substituted M-Type Barium Hexaferrite Prepared by Co-Precipitation. Journal of Magnetism and Magnetic Materials, 312, 418-429.
https://doi.org/10.1016/j.jmmm.2006.11.130
[17] Tokunaga, Y., Kaneko, Y., Okuyama, D., et al. (2010) Multiferroic M-Type Hexaferrites with a Room-Temperature Conical State and Magnetically Controllable Spin Helicity. Physical Review Letters, 105, Article ID: 257201.
https://doi.org/10.1103/PhysRevLett.105.257201
[18] Sakai, T., Chen, Y., Chinnasamy, C.N., Vittoria, C. and Harris, V.G. (2006) Textured Sc-Doped Barium-Ferrite Compacts for Microwave Applications below 20 GHz. IEEE Transactions on Magnetics, 42, 3353-3355.
https://doi.org/10.1109/TMAG.2006.879639
[19] Chen, Y., Nedoroscik, M.J., Geiler, A.L., Vittoria, C. and Harris, V.G. (2008) Perpendicularly Oriented Polycrystalline BaFe11.1Sc0.9O19 Hexaferrite with Narrow FMR Linewidths. Journal of the American Ceramic Society, 91, 2952-2956.
https://doi.org/10.1111/j.1551-2916.2008.02578.x
[20] Wang, L. and Zhang, Q. (2009) Effect of Fe3+/Ba2+ Mole Ratio on the Phase Formation and Microwave Properties of BaFe12O19 Prepared by Citrate-EDTA Complexing Method. Journal of Alloys and Compounds, 469, 251-257.
https://doi.org/10.1016/j.jallcom.2008.01.122
[21] Hessien, M.M., Rashad, M.M. and El-Barawy, K. (2008) Controlling the Composition and Magnetic Properties of Strontium Hexaferrite Synthesized by Co-Precipitation method. Journal of Magnetism and Magnetic Materials, 320, 336-343.
https://doi.org/10.1016/j.jmmm.2007.06.009
[22] Rashad, M.M., Radwan, M. and Hessien, M.M. (2008) Effect of Fe/Ba Mole Ratios and Surface-Active Agents on the Formation and Magnetic Properties of Co-Precipitated Barium Hexaferrite. Journal of Alloys and Compounds, 453, 304-308.
https://doi.org/10.1016/j.jallcom.2006.11.080
[23] Zhang, W., Bai, Y., Han, X., et al. (2013) Phase Formation, Sintering Behavior and Magnetic Property of Bi-Co-Ti Substituted M-Type Barium Hexaferrite. Journal of Alloys and Compounds, 556, 20-25.
https://doi.org/10.1016/j.jallcom.2012.12.113
[24] Obradors, X., Collomb, A., Pernet, M., Samaras, D. and Joubert, J.C. (1985) X-Ray Analysis of the Structural and Dynamic Properties of BaFe12O19 Hexagonal Ferrite at Room Temperature. Journal of Solid State Chemistry, 56, 171-181.
https://doi.org/10.1016/0022-4596(85)90054-4
[25] Röschmann, P., Lemke, M., Tolksdorf, W. and Welz, F. (1984) Anisotropy Fields and FMR Linewidth in Single- Crystal Al, Ga and Sc Substituted Hexagonal Ferrites with M Structure. Materials Research Bulletin, 19, 385-392.
https://doi.org/10.1016/0025-5408(84)90181-8
[26] Dionne, G.F. and Fitzgerald, J.F. (1991) Magnetic Hysteresis Properties of BaFe12−xInxO19 Ceramic Ferrites with C-Axis Oriented Grains. Journal of Applied Physics, 70, 6140-6142.
https://doi.org/10.1063/1.350022