聚乳酸/聚氧乙烯薄膜的性能研究
Properties of Polylactic Acid/Polyethylene Oxide Thin Film
DOI: 10.12677/MS.2016.66050, PDF, HTML, XML, 下载: 2,105  浏览: 5,376 
作者: 袁 琴, 李海东, 程凤梅:嘉兴学院材料与纺织工程学院,浙江 嘉兴
关键词: 聚乳酸聚氧乙烯薄膜共混物结晶Poly(Lactic Acid) Poly(Ethylene Oxide) Thin Film Blends Crystalline
摘要: 本文采用DSC测试了聚氧乙烯(PEO)和聚乳酸(PLA)的结晶温度(TC)和熔融温度(Tm),用溶液共混方法制备了不同组成的PLA/PEO共混物薄膜,并对其进行了差示扫描量热(DSC)、广角X射线衍射(WAXD)及偏光显微镜(POM)分析。结果表明:共混物中薄膜PLA的结晶温度和熔融温度随PEO在共混物中含量的增加而减小;而熔融温度降低的幅度较小,但是都比PLA均聚物的熔融温度低;PLA在共混物薄膜中的结晶形态与PLA均聚物一致,但结晶尺寸相差很大。
Abstract: The crystalline temperature and melt temperature of PEO were measured by DSC. PLA/PEO blend thin films of different composition were synthesized by solution blending, and the thin films were tested by Differential Scanning Calorimetry (DSC), Wide-Angle X-ray Diffraction (WAXD) and Po-larized Optical Microscope (POM). The results demonstrate that the crystalline temperature and the melting temperature of PLA decrease when the content of PEO in blend materials increases. The range of the decrease of the melting temperature is smaller. Its melting temperature is lower than the melting temperature of PLA homopolymer. Crystalline morphology in blends is consistent with PLA homopolymer, but the crystal size is difference.
文章引用:袁琴, 李海东, 程凤梅. 聚乳酸/聚氧乙烯薄膜的性能研究[J]. 材料科学, 2016, 6(6): 392-397. http://dx.doi.org/10.12677/MS.2016.66050

参考文献

[1] Chiu, F.C., Wang, Q., Cheng, S.Z.D., et al. (2000) Structural and Morphological Inhomogeneity of Short-Chain Branched Polyeth-ylenes in Multi-Step Crystallization. Journal of Macromolecular Science, Part B, 39, 317-331. https:/doi.org/10.1081/MB-100100388
[2] Frank, C.W., Rao, V., Despotopoulou, M.M., et al. (1996) Ructure in Thin and Ultrathin Spin-Cast Polymer Film. Science, 273, 912-923. https:/doi.org/10.1126/science.273.5277.912
[3] 于翔, 王延伟, 顾彩红, 等. 聚氧乙烯超薄膜晶体形貌研究[J]. 塑料科技, 2013, 42(4): 47-50.
[4] Auras, R., Harte, B. and Selke, S. (2004) An Overview of Polylactides as Packaging Materials. Macromolecular Bio- science, 4, 835-864. https:/doi.org/10.1002/mabi.200400043
[5] Sodergard A. and Stolt M. (2002) Properties of Lactic Acid Based Polymers and Their Correlation with Composition. Progress in Polymer Science, 27, 1123-1163. https:/doi.org/10.1016/S0079-6700(02)00012-6
[6] Drumright, R.E., Gruber, P.R. and Henton, D.E. (2000) Polylactic Acid Technology. Advanced Materials, 12, 1841- 1846. https:/doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
[7] Martin, O. and Averous, L. (2001) Poly(Lactic Acid): Plasticization and Properties of Biodegradable Multiphase Systems. Polymer, 42, 6209-6219. https:/doi.org/10.1016/S0032-3861(01)00086-6
[8] Sheth, M., Kumar, R.A., Dave, V., et al. (1997) Biodegradable Polymer Blends of Poly(Lactic Acid) and Poly(Ethylene Glycol). Journal of Applied Polymer Science, 21, 1495-1505. https:/doi.org/10.1002/(sici)1097-4628(19971121)66:8<1495::aid-app10>3.0.co;2-3
[9] Ralardo, M., Frisoni, G., Scandela, M., et al. (2003) Thermal and Mechanical Properties of Plasticized Poly(L-Lactic Acid). Journal of Applied Polymer Science, 90, 1731-1738.
[10] Hu, Y., Hu, Y.S., Topolkaraev, V., et al. (2003) Crystallization and Phase Separation in Blends of High Stereoregular Poly(Lactide) with Poly(Ethylene Glycol). Polymer, 44, 5681-5689. https:/doi.org/10.1016/S0032-3861(03)00609-8