污泥中温厌氧消化过程中多溴联苯醚的生物降解研究
Biodegradation of Polybrominated Diphenyl Ethers in Mesophilic Anaerobic Digestion of Sewage Sludge
DOI: 10.12677/AMB.2016.54006, PDF, HTML, XML, 下载: 2,197  浏览: 4,830  国家自然科学基金支持
作者: 牛 刚, 盛大超, 王 虹, 陈 玲, 孟祥周*:同济大学环境科学与工程学院,污染控制与资源化研究国家重点实验室,上海;刘志刚, 戴晓虎:同济大学环境科学与工程学院,城市污染控制国家工程研究中心,上海
关键词: 污泥多溴联苯醚厌氧消化微生物降解高通量测序Sewage Sludge Polybrominated Diphenyl Ethers Anaerobic Digestion Microbial Degradation High-Throughput Sequencing
摘要: 多溴联苯醚(PBDEs)是城市污泥中普遍存在的一种持久性有机污染物,其残留浓度与生态风险近年来受到广泛关注,但关于污泥处置过程中PBDEs归宿的研究相对较少。本文通过建立小型规模实验装置,连续运行60天,考察了典型城市污泥中温厌氧消化过程中PBDEs的生物降解过程,并初步分析了导致PBDEs降解的微生物群落组成。结果表明:经过两个泥龄阶段(40天)的运行,厌氧消化反应达到稳定状态。污泥中主要的PBDEs同系物BDE-209的质量呈现先增加后减少的趋势,在整个厌氧消化过程中,降解率达67.5%。其它PBDEs同系物则在第III泥龄阶段均表现出增加的趋势,特别是三种九溴化合物BDE-206、207和208。根据九溴化合物的增加量及其化合物分子结构,发现BDE-209脱溴降解主要发生在邻位和间位溴原子上,同时也有其它含溴化合物的生成。通过16S rDNA高通量测序技术测定表明,污泥厌氧消化过程中微生物群落组成丰度较高,多样性较大,其中脱卤球菌科(Dehalococcoidaceae)有可能在PBDEs的降解中起到一定作用。这为进一步分离筛选和培养污泥中厌氧降解PBDEs的优势菌种提供了依据。
Abstract: As persistent organic pollutants, polybrominateddiphenyl ethers (PBDEs) were frequently de-tected in sewage sludge worldwide. The occurrence of PBDEs as well as the irpotential environ-mental risk was widely concerned in recent years. However, few studies were conducted on the fate of PBDEs during the disposal of sewage sludge. The present study developed a small-scale anaerobic digestion reactor to explore the degradation of PBDEs in sewage sludge in 60 days. Meanwhile, the microbial structure in sludge was analyzed, aiming to further identify the responsible species for the degradation. Results showed that the mesophilic anaerobic digestion reaction reached to equilibrium after two sludge age running (40 days). The mass of BDE-209, a main component of PBDEs in sewage sludge, increased in the first sludge age and then decreased in the following two ages with a degradation rate of 67.5%. For all other PBDE congeners, the mass increased dramatically in the third sludge age, especially for three nona-brominated congeners BDE-206, 207, and 208. Based on mass changes and chemical structures of three nona-brominated congeners, the debromination of BDE-209 is more likely to occur in meta- and ortho-position of bromine rather than para-position. Other degradation products containing bromine are also expected. High-throughput sequencing results indicated that the microbialspecies in anaerobic sewage sludge is diverse, of which dehalococcoidaceae could be contributed more to the degradation of PBDEs. The findings could provide help in the isolation and culture of strains for degradation of PBDEs in sludge.
文章引用:牛刚, 盛大超, 王虹, 刘志刚, 陈玲, 戴晓虎, 孟祥周. 污泥中温厌氧消化过程中多溴联苯醚的生物降解研究[J]. 微生物前沿, 2016, 5(4): 55-65. http://dx.doi.org/10.12677/AMB.2016.54006

参考文献

[1] La Guardia, M.J., Hale, R.C. and Harvey, E. (2006) Detailed Polybrominated Diphenyl Ether (PBDE) Congener Composition of the Widely Used Penta-, Octa-, and Deca-PBDE Technical Flame-Retardant Mixtures. Environmental Science & Technology, 40, 6247-6254.
https://doi.org/10.1021/es060630m
[2] Darnerud, P.O., Eriksen, G.S., Jóhannesson, T., et al. (2001) Polybrominated Diphenyl Ethers: Occurrence, Dietary Exposure, and Toxicology. Environmental Health Perspectives, 109, 49-68.
https://doi.org/10.1289/ehp.01109s149
[3] Hites, R.A. (2004) Polybrominated Diphenyl Ethers in the Environment and in People: A Meta-Analysis of Concentrations. Environmental Science & Technology, 38, 945-956.
https://doi.org/10.1021/es035082g
[4] Law, R.J., Covaci, A., Harrad, S., et al. (2014) Levels and Trends of PBDEs and HBCDs in the Global Environment: Status at the End of 2012. Environment International, 65, 147-158.
https://doi.org/10.1016/j.envint.2014.01.006
[5] Ikonomou, M.G., Rayne, S. and Addison, R.F. (2002) Exponential Increases of the Brominated Flame Retardants, Polybrominated Diphenyl Ethers, in the Canadian Arctic from 1981 to 2000. Environmental Science & Technology, 36, 1886-1892.
https://doi.org/10.1021/es011401x
[6] Rayne, S., Ikonomou, M.G. and Whale, M.D. (2003) Anaerobic Microbial and Photochemical Degradation of 4,4’-Dibromodiphenyl Ether. Water Research, 37, 551-560.
https://doi.org/10.1016/S0043-1354(02)00311-1
[7] Gerecke, A.C., Hartmann, P.C., Heeb, N.V., et al. (2005) Anaerobic Degradation of Decabromodiphenyl Ether. Environmental Science & Technology, 39, 1078-1083.
https://doi.org/10.1021/es048634j
[8] He, J.Z., Robrock, K.R. and Alvarez-Cohen, L. (2006) Microbial Reductive Debromination of Polybrominated Diphenyl Ethers (PBDEs). Environmental Science & Technology, 40, 4429-4434.
https://doi.org/10.1021/es052508d
[9] Lee, L.K. and He, J. (2010) Reductive Debromination of Polybrominated Diphenyl Ethers by Anaerobic Bacteria from Soils and Sediments. Applied and Environmental Microbiology, 76, 794-802.
https://doi.org/10.1128/AEM.01872-09
[10] Tokarz, J.A., Ahn, M.Y., Leng, J., et al. (2008) Reductive Debromination of Polybrominated Diphenyl Ethers in Anaerobic Sediment and a Biomimetic System. Environmental Science & Technology, 42, 1157-1164.
https://doi.org/10.1021/es071989t
[11] Huang, H.W., Chang, B.V. and Lee, C.C. (2014) Reductive Debromination of Decabromodiphenyl Ether by Anaerobic Microbes from River Sediment. International Biodeterioration and Biodegradation, 87, 60-65.
https://doi.org/10.1016/j.ibiod.2013.10.011
[12] Yang, C., Meng, X.-Z., Chen, L. and Xia, S. (2011) Polybrominated Diphenyl Ethers in Sewage Sludge from Shanghai, China: Possible Ecological Risk Applied to Agricultural Land. Chemosphere, 85, 418-423.
https://doi.org/10.1016/j.chemosphere.2011.07.068
[13] Lay, J.J., Li, Y.Y. and Noike, T. (1997) Influences of pH and Moisture Content on the Methane Production in High- Solids Sludge Digestion. Water Research, 31, 1518-1524.
https://doi.org/10.1016/S0043-1354(96)00413-7
[14] Dai, X.H., Duan, N.N., Dong, B. and Dai, L. (2013) High-Solids Anaerobic Co-Digestion of Sewage Sludge and Food Waste in Comparison with Mono Digestions: Stability and Performance. Waste Management, 33, 308-316.
https://doi.org/10.1016/j.wasman.2012.10.018
[15] 段妮娜, 董滨, 李江华. 污泥和餐厨垃圾联合干法中温厌氧消化性能研究[J]. 环境科学, 2013, 34(1): 321-327.
[16] Rajagopal, R., Masse, D.I. and Singh, G. (2013) A Critical Review on Inhibition of Anaerobic Digestion Process by Excess Ammonia. Bioresource Technology, 143, 632-641.
https://doi.org/10.1016/j.biortech.2013.06.030
[17] 付胜涛, 于水利, 严晓菊. 剩余活性污泥和厨余垃圾的混合中温厌氧消化[J]. 环境科学, 2006, 27(7): 1459-1463.
[18] Duan, Y.P., Meng, X.Z., Yang, C., et al. (2010) Polybrominated Diphenyl Ethers in Background Surface Soils from the Yangtze River Delta (YRD), China: Occurrence, Sources, and Inventory. Environmental Science and Pollution Research, 17, 948-956.
https://doi.org/10.1007/s11356-010-0295-1
[19] Mai, B.X., Chen, S.J., Luo, X.J., et al. (2005) Distribution of Polybrominated Diphenyl Ethers in Sediments of the Pearl River Delta and Adjacent South China Sea. Environmental Science & Technology, 39, 3521-3527.
https://doi.org/10.1021/es048083x
[20] Li, Y., Chen, L., Wen, Z.H., et al. (2015) Characterizing Distribution, Sources, and Potential Health Risk of Polybrominated Diphenyl Ethers (PBDEs) in Office Environment. Environmental Pollution, 198, 25-31.
https://doi.org/10.1016/j.envpol.2014.12.024
[21] Schmidt, S., Fortnagel, P. and Wittich, R.M. (1993) Biodegradation and Transformation of 4,4’-and 2,4-Dihalodi- phenyl Ethers by Sphingomonas sp. Strain SS33. Applied and Environmental Microbiology, 59, 3931-3933.
[22] Lee, L.K., Ding, C., Yang, K.L. and He, J. (2011) Complete Debromination of Tetra- and Penta-Brominated Diphenyl Ethers by a Coculture Consisting of Dehalococcoides and Desulfovibrio Species. Environmental Science & Technology, 45, 8475-8482.
https://doi.org/10.1021/es201559g
[23] Gerecke, A.C., Giger, W. and Hartmann, P.C. (2006) Anaerobic Degradation of Brominated Flame Retardants in Sewage Sludge. Chemosphere, 64, 311-317.
https://doi.org/10.1016/j.chemosphere.2005.12.016
[24] Robrock, K.R., Korytar, P. and Alvarez-Cohen, L. (2008) Pathways for the Anaerobic Microbial Debromination of Polybrominated Diphenyl Ethers. Environmental Science & Technology, 42, 2845-2852.
https://doi.org/10.1021/es0720917
[25] Chouari, R., Le Paslier, D., Daegelen, P., et al. (2005) Novel Predominant Archaeal and Bacterial Groups Revealed by Molecular Analysis of an Anaerobic Sludge Digester. Environmental Microbiology, 7, 1104-1115.
https://doi.org/10.1111/j.1462-2920.2005.00795.x
[26] Ariesyady, H.D., Ito, T. and Okabe, S. (2007) Functional Bacterial and Archaeal Community Structures of Major Trophic Groups in a Full-Scale Anaerobic Sludge Digester. Water Research, 41, 1554-1568.
https://doi.org/10.1016/j.watres.2006.12.036
[27] 刘君寒, 胡光荣, 李福利. 厌氧消化系统微生物菌群的研究进展[J]. 工业水处理, 2011, 31(10): 10-14.
[28] Yamada, T., Sekiguchi, Y., Imachi, H., et al. (2005)Diversity, Localization, and Physiological Properties of Filamentous Microbes Belonging to Chloroflexi Subphylum I in Mesophilic and Thermophilic Methanogenic Sludge Granules. Applied and Environmental Microbiology, 71, 7493-7503.
https://doi.org/10.1128/AEM.71.11.7493-7503.2005