一种低面积低功耗RGB到YCbCr色彩空间转换电路实现方法
Low-Area and Low-Power Circuit Implementation of Color Space Conversion between RGB and YCbCr
DOI: 10.12677/OJCS.2016.54007, PDF, HTML, XML, 下载: 1,700  浏览: 3,768  科研立项经费支持
作者: 陆 斐:上海集成电路技术与产业促进中心,上海;曹 虎:中国科学院上海高等研究院,上海
关键词: RGBYCbCr公共子表达式消除(CSE)简化加法器图(RAG)补偿RGB YCbCr Common-Subexpression-Elimination (CSE) Reduced-Adder-Graph (RAG) Compensation
摘要: 本文提出了一种低面积低功耗RGB与YCbCr色彩空间转换的电路实现方法。首先提出一种结合简化加法器图(Reduced Adder Graph, RAG)的公共子表达式消除(Common Subexpression Elimination, CSE)的电路实现,然后提出一个提高精度的补偿方法。最后采用TSMC 0.18um工艺对所提出的算法进行综合和布局布线。仿真和综合结果表明相比于传统的正则有符号数字(Canonic Signed Digit, CSD)编码系统,采用本文提出的结合CSE和RAG的RGB到YCbCr空间转换电路实现方法面积和功耗减小了20%,补偿算法提高了系统精度。
Abstract: This paper presents a low-area and low-power circuit implementation of high-precision color space conversion from RGB to YCbCr. Firstly, an efficient circuit implementation combining com-mon-subexpression-elimination (CSE) with reduced-adder-graph (RAG) is presented. Secondly, a compensation method is proposed to enhance the precision. Finally, the synthesized results of a TSMC 0.18 um standard cell library are given. By using the proposed circuit implementation of color space conversion from RGB to YCbCr combining CSE and RAG without compensation, the results show that the area and power are reduced by about 20% than the traditional Canonic Signed Digital (CSD) method. With the compensation algorithm, the precision is much higher.
文章引用:陆斐, 曹虎. 一种低面积低功耗RGB到YCbCr色彩空间转换电路实现方法[J]. 电路与系统, 2016, 5(4): 51-59. http://dx.doi.org/10.12677/OJCS.2016.54007

参考文献

[1] ElDahshan, K.A., Yourself, M.I., Masameer, E.H. and Hassan, M.A. (2015) Comparison of Segmentation Framework on Digital Microscope Images for Acute Lymphoblastic Leukemia Diagnosis Using RGB and HSV Color Spaces. Journal of Biomedical Engineering and Medical Imaging, 2, 26.
[2] Naskar, R. and Chakraborty, R.S. (2013) Histo-gram-Bin-Shifting-Based Reversible Watermarking for Colour Images. IET Image Processing, 7, 99. https://doi.org/10.1049/iet-ipr.2012.0232
[3] Logeshwari, N., Aarthi, B., Manikandan, K., Yogeswari, K., Vishnupriya, M. and Priya, S. (2015) Optimization of Area in Digit Serial Multiple Constant Multiplication at Gate Level. Digital Siginal Processing, 7, 50.
[4] Kim, S.M., Chung, J.G. and Parhi, K.K. (2003) Low Error Fixed-Width CSD Multiplier with Efficient Sign Extension. IEEE Transactions on Circuits and Systems II, 50, 984. https://doi.org/10.1109/TCSII.2003.820231
[5] Yao, C.Y., Chen, H.H., Lin, T.F., Chien, C.J. and Hsu, X.T. (2004) A Novel Common-Subexpression-Elimination Method for Synthesizing Fixed-Point FIR Filters. IEEE Transactions on Circuits and Systems I, 51, 2215. https://doi.org/10.1109/TCSI.2004.836853
[6] Dempster, A.G. and Macleod, M.D. (1995) Use of Minimum-Adder Multiplier Blocks in FIR Digital Filters. IEEE Transactions on Circuits and Systems II, 42, 569. https://doi.org/10.1109/82.466647
[7] Wang, Y. and Roy, K. (2005) CSDC: A New Complexity Reduction Technique for Multiplierless Implementation of Digital FIR Filters. IEEE Transactions on Circuits and Systems I, 52, 1845. https://doi.org/10.1109/TCSI.2005.852208
[8] Yang, Y., Peng, Y.H. and Liu, Z.G. (2007) A Fast Algorithm for YCbCr to RGB Conversion. IEEE Transactions on Consumer Electronics, 53, 1490. https://doi.org/10.1109/TCE.2007.4429242
[9] Wang, Z. and Bovik, A.C. (2002) A Universal Image Quality Index. IEEE Signal Processing Letters, 9, 81. https://doi.org/10.1109/97.995823
[10] Hartley, R.I. (1996) Subexpression Sharing in Filters Using Canonic Signed Digit Multipliers. IEEE Transactions on Circuits and Systems II, 43, 677. https://doi.org/10.1109/82.539000