燕山赤城地区中元古界硅质岩地球化学特征
The Geochemical Characteristics of Siliceous Rocks in Mesoproterozoic Erathem in Chicheng Area of Yanshan Belt
DOI: 10.12677/JOGT.2016.384032, PDF, HTML, XML, 下载: 1,464  浏览: 2,331 
作者: 郑秀才:长江大学工程技术学院,湖北 荆州
关键词: 硅质岩热液活动沉积环境地球化学中元古界赤城Silicalite Hydrothermal Activity Sedimentary Environment Geochemistry Meso-Proterozoic Erathem Chicheng Area
摘要: 燕山赤城地区中元古界(高于庄组和雾迷山组)硅质岩具低Al2O3和TiO2 (质量分数平均为0.06%和0.01%),高TFe2O3 (质量分数平均为0.68%),高Fe与Ti质量分数比和(Fe + Mn)与Ti质量分数比(分别平均为131和140)的特征。区内硅质岩中MnO与TiO2质量分数比大于远洋环境硅质岩,且Fe2O3与TiO2质量分数比较高,而Al2O3与(Al2O3 + Fe2O3)质量分数比较低,表明其形成于远离陆源碎屑干扰而受热液作用影响的远岸环境,硅质主要来源于海底热液。
Abstract: The content of Al2O3 and TiO2 (the mass fraction was 0.06% and 0.01%, respectively) of silicalite was low and the content of TFe2O3 was high (the average mass fraction was 0.68%) in Mesoprote-rozoic Erathem (Gaoyuzhuang and Wumishan Formations) in Chicheng Area of Yanshan Belt, and it had characteristics of high ratio of Fe/Ti, Fe + Mn/Ti (the average value was 131 and 140, re-spectively). The mass fraction ratio of MnO/TiO2 of silicalite in the area was higher than that of sil-icalite in the ocean environment, and it was characterized by high ratio of Fe2O3/TiO2, low ratio of Al2O3/(Al2O3+Fe2O3). All these characters indicate that silicalite is formed in the far shore envi-ronment of which keeps away from the disturbance of terrigenous detrital and is influenced by hydrothermal process. The siliceous matter mainly comes from the seafloor hydrothermal fluid.
文章引用:郑秀才. 燕山赤城地区中元古界硅质岩地球化学特征[J]. 石油天然气学报, 2016, 38(4): 16-22. http://dx.doi.org/10.12677/JOGT.2016.384032

参考文献

[1] Murray, R.W. (1994) Chemical Criteria to Identify the Depositional Environment of Chert: General Principles and Applications. Sedimentary Geology, 90, 213-232. https://doi.org/10.1016/0037-0738(94)90039-6
[2] Moore Jr., T.C. (1996) Chert in the Pacific: Biogenic Silica and Hydrothermal Circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 261, 87-99. https://doi.org/10.1016/j.palaeo.2008.01.009
[3] 夏邦栋, 立荣, 方中, 等. 下扬子区早二叠世孤峰组层状硅质岩成因[J]. 地质学报, 1995, 69(2): 125-138.
[4] Maliva, R.G., Knoll, A.H. and Siever, R. (1989) Secular Changes in Chert Distribution: A Reflection of Evolving Biological Participation in the Silica Cycle. Palaios, 4, 519-532. https://doi.org/10.2307/3514743
[5] Steinberg, M., Bonnot-Courtois, C. and Tlig, S. (1983) Geochemical Contribution to the Understanding of Bedded Chert. Developments in Se-dimentology, 36, 193-210. https://doi.org/10.1016/S0070-4571(08)70091-8
[6] Murray, R.W., Jones, D.L. and Brink, M.R. (1992) Diagenetic Formation of Bedded Chert: Evidence from Chemistry of the Chert-Shale Couplet. Geology, 20, 271-274. https://doi.org/10.1130/0091-7613(1992)020<0271:DFOBCE>2.3.CO;2
[7] 任国选, 孟祥化, 葛铭, 等. 蓟县地区雾迷山组硅质岩成因研究[J]. 沉积学报, 2008, 26(1): 70-75.
[8] 郑秀才, 王正允, 陈梦蛟. 辽西凌源地区雾迷山组硅质岩地球化学特征[J]. 石油天然气学报(江汉石油学院学报), 2010, 32(5): 73-78.
[9] 郑秀才. 冀北赤城雾迷山组硅质岩地球化学特征及沉积环境[J]. 石油天然气学报(江汉石油学院学报), 2011, 33(6): 53-58.
[10] 汪凯明, 罗顺社. 燕山地区中元古界高于庄组和杨庄组地球化学特征及环境意义[J]. 矿物岩石地球化学通报, 2009, 28(4): 356-364.
[11] 罗顺社, 张建坤, 陈小军, 等. 辽西凌源地区雾迷山组沉积特征与层序地层[J]. 中国地质, 2010, 37(2): 394-403.
[12] 乔秀夫, 高林志. 燕辽裂陷槽中元古代古地震与古地理[J]. 古地理学报, 2007, 9(4): 337-352.
[13] 温献德. 华北北部中, 上元古界的大陆裂谷模式和地层划分[J]. 前寒武纪研究进展, 1997, 20(3): 21-28.
[14] 温献德. 华北北部中晚元古代岩相古地理及其演化[J]. 石油大学学报(自然科学版), 1989, 13(2): 13-21.
[15] 陆克政, 戴俊生. 冀辽裂陷谷中上元古界构造特征及演化[J]. 石油大学学报(自然科学版), 1989, 13(2): 1-11.
[16] Sugitani, K., Horiuchi, Y., Adachi, M. and Sugisaki, R. (1996) Anomalously Low Al2O3/TiO2 Values for Archean Cherts from the Pilbara Block, Western Australia-Possible Evidence for Extensive Chemical Weathering on the Early Earth. Precambrian Research, 80, 49-76. https://doi.org/10.1016/S0301-9268(96)00005-8
[17] Thurston, D.R. (1972) Studies on Bedded Cherts. Con-tributions to Mineralogy and Petrology, 36, 329-334. https://doi.org/10.1007/BF00444339
[18] Yamamoto, K. (1987) Geochemical Characteristics and Depositional Environments of Cherts and Associated Rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 52, 65-108. https://doi.org/10.1016/0037-0738(87)90017-0
[19] Sugisaki, R., Yamamoto, K. and Adachi, M. (1982) Triassic Bedded Cherts in Central Japan Are Not Pelagic. Nature, 298, 644-647. https://doi.org/10.1038/298644a0
[20] Beauchamp, B. and Boud, A. (2002) Growth and Demise of Permian Biogenic Chert along Northwest Pangea: Evidence for End-Permian Collapse of Thermohaline Cir-culation. Palaeogeography, palaeoclimatology, palaeoecology, 184, 37-63. https://doi.org/10.1016/S0031-0182(02)00245-6
[21] Adachi, M., Yamamoto, K. and Sugisaki, R. (1986) Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific: Their Geological Significance as Indication of Ocean Ridge Activity. Sedi-mentary Geology, 47, 125-148. https://doi.org/10.1016/0037-0738(86)90075-8
[22] Yamamoto, K. (1987) Geochemical Characte-ristics and Depositional Environments of Cherts and Associated Rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 52, 65-108. https://doi.org/10.1016/0037-0738(87)90017-0
[23] Bostrom, K., Kraemer, T. and Gantner, S. (1973) Provenace and Accumulation Rates of Opaline Silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific Pelagic Sediments. Chemical Geology, 11, 123-148. https://doi.org/10.1016/0009-2541(73)90049-1