微纳多齿谐振光栅偏振分束器的研究
A Polarizing Beam Splitter Based on Micro-Nano Multi-Subparts Resonant Grating
DOI: 10.12677/APP.2016.612034, PDF, HTML,  被引量 下载: 2,050  浏览: 8,185  国家自然科学基金支持
作者: 吴华明*, 肖文波, 刘宪爽, 马林飞, 丁月霞, 曾 静:无损检测与光电传感技术及应用国家地方联合工程实验室、无损检测技术教育部重点实验室,江西 南昌;江西省光电检测技术工程实验室、南昌航空大学测试与光电工程学院,江西 南昌;肖永生, 黄丽贞:南昌航空大学信息工程学院,江西 南昌
关键词: 衍射光栅偏振分束器泄露模谐振Diffraction and Gratings Polarizing Beam Splitters (PBSs) Leaky-Mode Resonance (LMR)
摘要: 由于光栅对于TE和TM偏振光表现出不同的衍射性质,据此,基于硅基微纳多齿谐振光栅,我们设计了一种高性能的偏振分束器。严格耦合波理论分析方法表明,在C + L (1.53~1.62 μm)宽谱范围内,此器件拥有衍射效率大于97%,消光比大于16 dB,以及角度带宽为8˚等的优越性能。此外,我们还考察了结构参数变化对此光栅偏振分束器性能的影响。
Abstract: Due to the different diffraction properties of gratings for TE and TM polarized wave, in this study, using the silicon based micro-nano multi-subparts resonant grating, we propose a high performance polarizing beam splitter (PBS). The properties of the grating PBS are investigated by rigorous coupled-wave analysis. It is shown that, over a broadband spectrum of 1.53 ~ 1.62μm (C + L band), the grating PBS demonstrates high diffraction efficiency (>97%) with extinction ratio (ER) greater than 16 dB and a comparatively wide angular bandwidth (about 8˚). Effects of deviation from the design parameters on the performance of the grating PBS are also presented.
文章引用:吴华明, 肖文波, 刘宪爽, 肖永生, 黄丽贞, 马林飞, 丁月霞, 曾静. 微纳多齿谐振光栅偏振分束器的研究[J]. 应用物理, 2016, 6(12): 273-280. http://dx.doi.org/10.12677/APP.2016.612034

参考文献

[1] Liang, T.K. and Tsang, H.K. (2005) Integrated Polarization Beam Splitter in High Index Contrast Silicon-on-Insulator Waveguides. IEEE Photonics Technology Letters, 17, 393-395.
https://doi.org/10.1109/LPT.2004.839462
[2] Ojima, M., Saito, A., Kaku, T., et al. (1986) Compact Magnetooptical Disk for Coded Data Storage. Applied Optics, 25, 483-489.
https://doi.org/10.1364/AO.25.000483
[3] Zhou, L. and Liu, W. (2005) Broadband Polarizing Beam Splitter with an Embeddedmetal-Wire Nanograting. Optics Letters, 30, 1434-1436.
https://doi.org/10.1364/OL.30.001434
[4] Wu, Z., Powers, P.E., Sarangan, A.M. and Zhan, Q. (2008) Optical Characterization of Wire Grid Micropolarizers Designed for Infrared Imaging Polarimetry. Optics Letters, 33, 1653-1655.
https://doi.org/10.1364/OL.33.001653
[5] Li, L. and Dobrowolski, J.A. (2000) High-Performance Thin-Film Polarizing Beam Splitter Operating at Angles Greater than the Critical Angle. Applied Optics, 39, 2754-2771.
https://doi.org/10.1364/AO.39.002754
[6] Zheng, J., Zhou, C., Feng, J., et al. (2008) Polarizing Beam Splitter of Deep-Etched Triangular-Groove Fused-Silica Gratings. Opt. Lett., 33, 1554-1556.
https://doi.org/10.1364/OL.33.001554
[7] Zheng, J., Zhou, C., Feng, J., et al. (2009) A Metal-Mirror-Based Reflecting Polarizing Beam Splitter. Journal of Optics A: Pure and Applied Optics, 11, 015710-1-6.
https://doi.org/10.1088/1464-4258/11/1/015710
[8] Zhang, L., Li, J., Li, C., et al. (2006) A Novel Nano-Grating Structure of Polarizing Splitters. Chinese Physics Letters, 23, 1820-1822.
https://doi.org/10.1088/0256-307X/23/7/046
[9] Feng, J. and Zhou, Z. (2007) Polarization Beam Splitter Using a Binary Blazed Grating Coupler. Optics Letters, 32, 1662-1664.
https://doi.org/10.1364/OL.32.001662
[10] Zhang, Y., Jiang, Y., He, S., et al. (2007) A Broad-Angle Polarization Beam Splitter Based on a Simple Dielectric Periodic Structure. Optics Express, 12, 14363-14368.
https://doi.org/10.1364/OE.15.014363
[11] 邵士茜. 硅基集成光栅耦合器及其偏振无关特性研究[M]. 武汉: 华中科技大学, 2011.
[12] Zheng, G., Liu, G., Kenney, M.G., et al. (2016) Ultracompact High-Efficiency Polarising Beam Splitter Based on Silicon Nanobrick Arrays. Optics Express, 24, 6749-6757.
https://doi.org/10.1364/OE.24.006749
[13] Lee, W. and Degertekin, F.L. (2004) Rigorous Coupled-Wave Analysis of Multilayered Grating Structures. Journal of Lightwave Technology, 22, 2359-2363.
https://doi.org/10.1109/JLT.2004.833278
[14] Wu, H., Huang, L., Xiao, Y., et al. (2013) A Wideband Reflector Realized by a Subwavelength Multi-Subpart Profile Grating Structure. Journal of Optics, 15, 035703.
https://doi.org/10.1088/2040-8978/15/3/035703
[15] 马林飞, 肖文波, 吴华明, 等. 基于亚波长多齿光栅结构的双功能偏振选择分束器的研究[J]. 应用物理, 2016, 6(9): 193-203.
[16] Shokooh-Saremi, M. and Magnusson, R. (2007) Particle Swarm Optimization and Its Application to the Design of Diffraction Grating Filters. Optics Letters, 32, 894-896.
https://doi.org/10.1364/OL.32.000894
[17] 吴华明, 徐欢欢, 马林飞, 肖永生, 黄丽贞, 肖文波, 段军红. 宽带多齿谐振光栅反射镜的研究[J]. 应用物理, 2016, 6(8): 167-174.
[18] Lalanne, P., Hazart, J., Chavel, P., et al. (1999) A Transmission Polarizing Beam Splitter Grating. Journal of Optics A: Pure and Applied Optics, 1, 215-219.
https://doi.org/10.1088/1464-4258/1/2/018
[19] Wang, B., Zhou, C., Wang, S., et al. (2007) Polarizing Beam Splitter of a Deep-Etched Fused-Silica Grating. Optics Letters, 32, 1299-1301.
https://doi.org/10.1364/OL.32.001299
[20] Shokooh-Saremi, M. and Magnusson, R. (2008) Wideband Leaky-Mode Resonance Reflectors: Influence of Grating Profile and Sublayers. Optics Express, 16, 18249-18263.
https://doi.org/10.1364/OE.16.018249
[21] Magnusson, R. and Wang, S.S. (1992) New Principle for Optical Filters. Applied Physics Letters, 61, 1022-1024.
https://doi.org/10.1063/1.107703
[22] Ding, Y. and Magnusson, R. (2007) Band Gaps and Leaky-Wave Effects in Resonant Photonic-Crystal Waveguides. Optics Express, 15, 680-694.
https://doi.org/10.1364/OE.15.000680
[23] Mateus, C.F.R., Huang, M.C.Y., Chen, L., et al. (2004) Broad-Band Mirror (1.12 - 1.62 μm) Using a Subwavelength Grating. IEEE Photonics Technology Letters, 16, 1676-1678.
https://doi.org/10.1109/LPT.2004.828514
[24] Mateus, C.F.R., Huang, M.C.Y., Deng, Y., et al. (2004) Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating. IEEE Photonics Technology Letters, 16, 518-520.
https://doi.org/10.1109/LPT.2003.821258
[25] Magnusson, R. and Shokooh-Saremi, M. (2008) Physical Basis for Wideband Resonant Reflectors. Optics Express, 16, 3456-3462.
https://doi.org/10.1364/OE.16.003456
[26] Zhou, Z., Wu, H., Feng, J., et al. (2010) Silicon Nanophotonic Devices Based on Resonance Enhancement. Journal of Nanophotonics, 4, 041001.
https://doi.org/10.1117/1.3527260