16S rRNA和COI基因序列对长江口虾虎鱼科鱼类种类鉴定和系统分类的对比研究
Comparative Study of Mitochondrial 16S rRNA and COI Gene Sequences in Species Identification and Phylogeny of Gobiidae from Yangtze Estuary
DOI: 10.12677/OJFR.2016.34012, PDF, HTML, XML, 下载: 1,639  浏览: 3,740 
作者: 宋 超, 赵 峰, 侯俊利, 杨 刚:中国水产科学研究院东海水产研究所,农业部东海与长江口渔业资源环境科学观测实验站,上海 ;吕 杨, 庄 平:中国水产科学研究院东海水产研究所,农业部东海与长江口渔业资源环境科学观测实验站,上海 ;南京农业大学无锡渔业学院,江苏 无锡
关键词: 长江口虾虎鱼科16S rRNACOI种类鉴定系统分类Yangtze Estuary Gobiidae 16S rRNA COI Species Identification Phylogeny
摘要: 为了对比线粒体16S rRNA和COI基因片段在长江口虾虎鱼科鱼类种类鉴定和系统分类研究中的适用性,本文运用PCR技术,扩增了虾虎鱼科7属8种24个个体的线粒体16S rRNA和COI基因片段,并对其种间的序列差异进行比较分析。经比对后得到16S rRNA基因长度为535bp的序列,共编码178个氨基酸,24条16S rRNA序列共有12个单倍型,共检测到变异位点161个,约占总位点数的30.1%,插入/缺失位点15个,转换与颠换比值(Si/Sv)为1.51;同时,获得COI基因长度641 bp,共编码213个氨基酸,单倍型个数与16S rRNA序列相同,变异位点221个,所占百分比高于16S rRNA序列(约34.5%),无插入/缺失位点,转换/颠换值为1.29。两种基因的转换/颠换值均小于2,因此对其做了相应的突变饱和性分析,结果显示,两种基因在虾虎鱼科鱼类中不存在突变饱和现象。遗传距离结果显示,16S rRNA基因种间序列变异程度均小于COI基因,16S rRNA基因的种内和种间平均遗传距离分别为0.002和0.169,种间约为种内遗传距离的84倍,种间遗传距离最小值存在于纹缟虾虎鱼和髭缟虾虎鱼之间为0.100;而COI序列的种内和种间平均遗传距离分别0.001和0.215,种间为种内遗传距离的215倍。因此,16S rRNA和COI序列均适用于虾虎鱼科的种类鉴定。基于16S rRNA和COI基因序列获得的UPGMA系统树显示虾虎鱼科鱼类均可形成单系群,不同之处在于16S rRNA基因序列主要表现种、属间序列差异,而COI则突出表现种、属、科间序列差异。因此,在应用这两种基因片段做系统分类研究时,应根据研究的不同系统水平选择适当的分子标记。
Abstract: In order to compare the applicability of mitochondrial 16S rRNA and COI (mitochondrial cytoch-rome oxidase subunit I) in species identification and phylogeny of Gobiidae from Yangtze Estuary, this study investigated the genetic characteristics of these two gene fragments. The two gene fragments of 8 species in Gobiidae were amplified by PCR, and the sequence variation among in-terspecies was analyzed. A total of 535 bp, 12 haplotypes, 161 variation sites (about 30.1% of all), 15 insertion or deletion of sites were detected for 16S rRNA of 24 individuals, and 178 amino acids were encoded. All of the transitional pairs (si) was slightly more than that of the transversional pairs (sv), and the ratio (R = si/sv) was 1.51; while 641 bp and 221 variation sites were detected for COI, and no insertion or deletion of sites was found in the COI gene, the ratio of si and sv was 1.29. Both the ratios of the two genes from 24 individuals were less than 2, so mutation saturation of the two genes was analyzed. However, the result showed that there was no mutation saturation in the two genes of Gobiidae. The results of genetic distance showed that the degree of variation of 16S rRNA in interspecific sequence was less than that of COI sequence. Intraspecific and interspecific K2P genetic distances were respectively 0.002 and 0.169 for 16S rRNA sequences, and 0.001 and 0.215 for COI sequences. Genetic differences of 16S rRNA sequences between congeners were, on average, about 84 times higher than the differences within species, and the minimum value (0.100) was existed between Tridentiger trigonocephalus and Tridentiger barbatus; while genetic differences of COI sequences were 215 times between intraspecies and interspecies, which met Hebert’s species identification standard (more than 10 times the difference between intraspecies and interspecies). Therefore, 16S rRNA and COI sequences were both applicable for species identi-fication in Gobiidae. The UPGMA phylogenetic tree was constructed based on 16S rRNA and COI, which demonstrated that Gobiidae in the Yangtze Estuary was a monophyletic group. The major differences were that interspecies and genera were more emphasis for 16S rRNA gene, while it highlighted interspecies, genera and family more for COI gene. As a result, it is advisable to select appropriate molecular markers according to different classified levels when applying the two gene fragments for studying species identification and phylogeny.
文章引用:宋超, 吕杨, 赵峰, 侯俊利, 杨刚, 庄平. 16S rRNA和COI基因序列对长江口虾虎鱼科鱼类种类鉴定和系统分类的对比研究[J]. 水产研究, 2016, 3(4): 71-81. http://dx.doi.org/10.12677/OJFR.2016.34012

参考文献

[1] 伍汉霖, 钟俊生. 中国动物志, 硬骨鱼纲: 鲈形目, 虾虎鱼亚目[M]. 北京: 科学出版社, 2008: 136-718.
[2] 于亚男, 宋超, 侯俊利, 等. 基于线粒体COI基因部分序列的长江口虾虎鱼科鱼类系统分类[J]. 淡水渔业, 2014, 44(5): 3-8.
[3] 郭新红, 刘少军, 刘巧, 等. 鱼类线粒体DNA研究新进展[J]. 遗传学报, 2004, 31(9): 983-1000.
[4] Sereno-Uribe, A.L., Pinacho-Pinacho, C.D., Garcia-Varela, M., et al.(2013) Using Mitochondrial and Ribosomal DNA Sequences to Test the Taxonomic Validity of Clinostomum complanatum Rudolphi, 1814 in Fish-Eating Birds and Freshwater Fishes in Mexico, with the Description of a New Species. Parasitology Research, 112, 2855-2870. https://doi.org/10.1007/s00436-013-3457-5
[5] Awotunde, E.O., Bemji, M.N., Olowofeso, O., et al.(2015) Mito-chondrial DNA Sequence Analyses and Phylogenetic Relationships among Two Nigerian Goat Breeds and the South African Kalahari Red. Animal Biotechnology, 26, 180- 187. https://doi.org/10.1080/10495398.2014.977907
[6] Akimoto, S., Kinoshita, S., Sezaki, K., et al. (2002) Identification of Alfonsino and Related Fish Species Belonging to the Genus Beryx with Mitochondrial 16S rRNA Gene and Its Ap-plication on Their Pelagic Eggs. Fisheries Science, 68, 1242-1249. https://doi.org/10.1046/j.1444-2906.2002.00561.x
[7] Garcia-Vazquez, E., Alvarez, P., Lopes, P., et al. (2006) PCR-SSCP of the 16S rRNA Gene, a Simple Methodology for Species Identification of Fish Eggs and Larvae. Scientia Marina, 70, 13-21. https://doi.org/10.3989/scimar.2006.70s213
[8] Durand, J.D., Diatta, M.A., Diop, K., et al. (2010) Multiplex 16S rRNA Haplotype-Specific PCR, a Rapid and Convenient Method for Fish Species Identification: An Application to West African Clupeiform Larvae. Molecular Ecology Resources, 10, 568-572. https://doi.org/10.1111/j.1755-0998.2009.02776.x
[9] Palumbi, S., Martin, A., Romano, S., et al. (1991) The Simple Fool’s Guide to PCR (Ver. 2.0). University of Hawaii, Honolulu, 25-28.
[10] Ward, R.D., Zemlak, T.S., Innes, B.H., et al. (2005) DNA Barcoding Australia’s Fish Species. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 1847-1857. https://doi.org/10.1098/rstb.2005.1716
[11] 项方, 邹记兴, 邓凤娇, 等. 用细胞色素b部分序列研究斑马鱼的分子分类与系统发育[J]. 动物学杂志, 2004, 39(5): 13-18.
[12] Esposti, M.D., de Vries, S., Crimi, M., et al. (1993) Mitochondrial Cytochrome b: Evolution and Structure of the Protein. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1143, 243-271. https://doi.org/10.1016/0005-2728(93)90197-N
[13] 张俊丽, 高天翔, 韩志强, 等. 3种白鲑线粒体细胞色素b和16S rRNA基因片段序列分析[J]. 中国水产科学, 2007, 14(1): 8-14.
[14] Zhang, J.B. and Hanner, R. (2012) Mole-cular Approach to the Identification of Fish in the South China Sea. PLoS ONE, 7, e30621. https://doi.org/10.1371/journal.pone.0030621
[15] Lakra, W.S., Goswami, M. and Gopalakrishnan, A. (2009) Mole-cular Identification and Phylogenetic Relationships of Seven Indian Sciaenids (Pisces: Perciformes, Sciaenidae) Based on 16S rRNA and Cytochrome c Oxidase subunit I Mitochondrial Genes. Molecular Biology Reports, 36, 831-839. https://doi.org/10.1007/s11033-008-9252-1
[16] 毕潇潇, 高天翔, 肖永双, 等. 4种鳕鱼线粒体16S rRNA COI和Cytb基因片段序列的比较研究[J]. 南方水产科学, 2009, 5(3): 46-52.
[17] 程国宝, 李三磊, 徐冬冬, 等. 梭鱼和鲻鱼线粒体16S rRNA和COI基因片段的比较分析[J]. 浙江海洋学院学报: 自然科学版, 2012, 31(2): 103-106.
[18] 孙希褔. 基于形态学和分子生物学资料探讨中国沿海10种虾虎鱼类的系统发育关系[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2009.
[19] Asakawa, S., Kumazawa, Y., Araki, T., et al. (1991) Strand-Specific Nucleotide Composition Bias in Echinoderm and Vertebrate Mitochondrial Genomes. Journal of Molecular Evolution, 32, 511-520. https://doi.org/10.1007/BF02102653
[20] Saccone, C., de Glorgi, C., Gissi, C., et al. (1999) Evolutionary Genomics in Metazoa: The Mitochondrial DNA as a Model System. Gene, 238, 195-209. https://doi.org/10.1016/S0378-1119(99)00270-X
[21] Hebert, P.D., Cywinska, A., Ball, S.L., et al. (2003) Biological Identifications through DNA Barcodes. Biological Sciences, 270, 313-321. https://doi.org/10.1098/rspb.2002.2218
[22] Steinke, D., Zemlak, T.S., Boutillier, J.A., et al. (2009) DNA Barcoding of Pacific Canada’s Fishes. Marine Biology, 156, 2641-2647. https://doi.org/10.1007/s00227-009-1284-0
[23] 彭居俐, 王绪祯, 王丁, 等. 基于线粒体COI基因序列的DNA条形码在鲤科鲌属鱼类物种鉴定中的应用[J]. 水生生物学报, 2009, 33(2): 271-276. https://doi.org/10.3724/SP.J.1035.2009.00271
[24] 周晓犊, 杨金权, 唐文乔, 等. 基于线粒体COI基因DNA条形码的中国鲚属物种有效性分析[J]. 动物分类学报, 2010, 35(4): 819-826.
[25] 庄平, 王幼槐, 李圣法, 等. 长江口鱼类[M]. 上海: 上海科学技术出版社, 2006: 426-428.
[26] 王茜, 齐兴柱, 骆剑, 等. 尖塘鳢属鱼类线粒体16S rRNA基因序列变异及分子系统进化[J]. 海南大学学报: 自然科学版, 2009, 27(3): 245-251.
[27] 唐优良. 基于16S rRNA基因序列的中国鲽形目鱼类分子系统学研究[D]: [硕士学位论文]. 广州: 暨南大学, 2011.
[28] 吴仁协, 李超, 刘静. 鲳亚目鱼类线粒体16S rRNA基因序列变异及其分子系统进化关系[J]. 水产学报, 2013, 37(1): 16-25. https://doi.org/10.3724/SP.J.1231.2013.38167
[29] 王淑英, 时伟, 江金霞, 等. COI和16S rRNA基因序列在鳎科(Soleidae)鱼类种类鉴定中的适用性研究[J]. 热带海洋学报, 2014, 33(3): 57-65.
[30] Kochzius, M., Seidel, C., Antoniou, A., et al. (2010) Identifying Fishes through DNA Barcodes and Mi-croarrays. PLoS ONE, 5, e12620. https://doi.org/10.1371/journal.pone.0012620