高温高压水平井溢流模拟分析
Overflow Simulation Analysis of Horizontal Well with High Temperature and Pressure
DOI: 10.12677/IJFD.2016.44010, PDF, HTML, XML,  被引量 下载: 1,463  浏览: 2,786  国家自然科学基金支持
作者: 蒋凯, 朱海峰, 夏强:中国海洋石油国际有限公司,北京;丁前, 孙小辉:中国石油大学(华东),山东 青岛
关键词: 高温高压水平井多相流溢流模拟High Temperature and Pressure Horizontal Wells Multiphase Flow Overflow Simulation
摘要: 水平井溢流后,气体在水平井段膨胀量小,溢流不容易发现,进入垂直井筒后,气体上升膨胀导致井涌快速发展,给井控造成困难。针对海上高温高压水平井的具体工况,考虑井筒温度场、漂移模型的特点以及水平井段与地层的耦合,结合气液两相流基本方程,建立了高温高压水平井井涌理论模型,并对不同时刻、不同地层欠压实、不同裸眼长度的海上高温高压水平井井涌进行了模拟。模拟结果表明:溢流早期,环空压力和截面含气率变化比较快;地层压力系数越高,泥浆池增量、环空压力和截面含气率变化越迅速;裸眼长度较小时,泥浆池增量、环空压力和截面含气率变化不明显,裸眼长度较大时,泥浆池增量、环空压力和截面含气率变化很快。
Abstract: When well kicking occurs in horizontal section, it will be difficult to discover at early stage of well kick. However, the volume of overflows will suddenly increase, when the overflows passes into vertical section. Considering the characteristic of wellbore temperature field, drift model and the coupling between wellhole and formation, combining basic equation of gas-water two-phase flow, and then build a horizontal well kick theoretical model of high temperature and pressure well. This paper simulates different moment, unbalanced formation and length of barefoot interval of high temperature and pressure of horizontal wells on sea. The simulation results show that annulus pressure and void fraction vary quickly in the early stage of overflow; with the increase of formation pressure coefficient, the pit gain, annulus pressure and void fraction vary more quickly; the pit gain, annulus pressure and void fraction vary slightly in short barefoot interval; while the pit gain, annulus pressure and void fraction vary obviously in short barefoot interval.
文章引用:蒋凯, 丁前, 朱海峰, 夏强, 孙小辉. 高温高压水平井溢流模拟分析[J]. 流体动力学, 2016, 4(4): 82-92. http://dx.doi.org/10.12677/IJFD.2016.44010

参考文献

[1] 王瑞娥, 汪海阁. 水平井压井方法[J]. 钻采工艺, 2005, 28(2): 11-13+111.
[2] 袁波, 刘刚, 戴爱国, 等. 高温高压天然气井常见问题及安全钻井工艺[J]. 国外油田工程, 2006, 22(8): 40-42.
[3] Hasan, A.R., Kabir, C.S. and Lin, D. (2005) Analytic Wellbore Temperature Model for Transient Gas-Well Testing. SPE Reservoir Evaluation & Engineering, 8, 240-247.
https://doi.org/10.2118/84288-PA
[4] 赵金洲, 彭瑀, 李勇明, 田植升, 符东宇. 基于双层非稳态导热过程的井筒温度场半解析模型[J]. 天然气工业, 2016, 36(1): 68-75.
[5] 尹邦堂, 李相方, 孙宝江, 等. 井筒环空稳态多相流水动力学模型[J]. 石油勘探与开发, 2014(3): 359-366.
[6] 孙宝江, 宋荣荣, 王志远. 高含硫化氢天然气气侵时的溢流特性[J]. 中国石油大学学报(自然科学版), 2012, 36(1): 73-79.
[7] Zuber, N. and Findlay, J. (1965) Average Volume Concentration in Two Phase Systems. ASME Journal of Heat Transfer, 87, 453-468.
https://doi.org/10.1115/1.3689137
[8] 宫敬, 程小姣, 于达, 吴海浩. 水平井筒中气–液两相流漂移模型研究[J]. 石油钻采工艺, 2009, 31(4): 67-70.
[9] Shi, H., Holmes, J.A., Durlofsky, L.J., Aziz, K., Diaz, L.R., Alkaya, B. and Oddie, G. (2003) Drift-Flux Modeling of Multiphase Flow in Wellbores. SPE Annual Technical Conference and Exhibition, Denver, 5-8 October 2003, Article ID: SPE-84228-MS.
https://doi.org/10.2118/84228-MS
[10] 吴锋. 水平气井渗流特征及生产系统分析方法研究[D]: [硕士学位论文]. 成都: 西南石油大学, 2005.
[11] Marshall, D.W. and Bentsen, R.G. (1982) A Computer Model to Determine the Temperature Distributions In a Wellbore. Petroleum Society of Canada, Calgary.
https://doi.org/10.2118/82-01-05
[12] Minghui, W. and Gensheng, L. (2016) Wellbore Temperature Prediction and Control through State Space Model. SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, 25-28 April 2016, Article ID: SPE-182734-MS.
https://doi.org/10.2118/182734-MS
[13] Romero, J. and Touboul, E. (1998) Temperature Prediction for Deepwater Wells: A Field Validated Methodology. SPE Annual Technical Conference and Exhibition, New Orleans, 27-30 September 1998, Article ID: SPE-49056-MS.
https://doi.org/10.2118/49056-MS
[14] Karstad, E. and Aadnoy, B.S. (1997) Analysis of Temperature Measurements during Drilling. SPE Annual Technical Conference and Exhibition, San Antonio, 5-8 October 1997, Article ID: SPE-38603-MS.
https://doi.org/10.2118/38603-MS
[15] Yoshida, N., Zhu, D. and Hill, A.D. (2013) Temperature Prediction Model For A Hori-zontal Well With Multiple Fractures In A Shale Reservoir. SPE Annual Technical Conference and Exhibition, New Orleans, 30 Sep-tember-2 October 2013, Article ID: SPE-166241-MS.
https://doi.org/10.2118/166241-MS
[16] Charles, Y.O. and Igbokoyi, A.O. (2012) Temperature Prediction Model for Flowing Distribution in Wellbores and Pipelines. Nigeria Annual International Conference and Exhibition, Lagos, 6-8 August 2012, Article ID: SPE- 163038-MS.
https://doi.org/10.2118/163038-MS
[17] Davies, S.N., Gunningham, M.M., Bittleston, S.H., Guillot, F. and Swanson, B.W. (1994) Field Studies of Circulating Temperatures Under Cementing Conditions. SPE Drilling & Completion, 9, 12-16.
https://doi.org/10.2118/21973-PA