基于转子动能控制和蓄电池储能系统共同作用的风电调频策略
A Strategy of Wind Power Participating in System Frequency Regulation Based on RKC and BESS
DOI: 10.12677/SG.2016.66047, PDF, HTML, XML, 下载: 1,752  浏览: 4,337  科研立项经费支持
作者: 赵嘉兴, 高 伟, 上官明霞:国网山西省电力公司科信部,山西 太原;查效兵*, 岳 帅:华北电力大学电气与电子工程学院,北京
关键词: 风力发电频率调整转子动能控制蓄电池储能系统负荷扰动 Wind Power Frequency Regulation RKC BESS Load Disturbance
摘要: 大量风机采用电力电子变流器的方式并网,使得风机与系统解耦,不具有像同步机一样的调频能力。采用转子动能控制增加系统的惯性,控制转速释放转子中的旋转动能为电网频率提供动态支持。同时引入响应速度快、规模灵活、能量密度大的蓄电池储能系统,弥补转子动能控制的不足。利用蓄电池储能系统快速吐纳能量的能力,抑制频率波动,减小系统的稳态频率偏差,提高动态频率响应能力。最后,基于DIgSILENT/PowerFactory平台对该控制策略进行了仿真研究,验证了该策略的合理性和有效性。
Abstract: A large number of wind turbines are connected into power grid by power electronic converter, making wind turbines and the grid decoupling, without the same frequency regulation capability as synchronous generators. In order to improve the frequency regulation capability of wind turbines, a frequency modulation strategy based on rotor kinetic energy control (RKC) and battery energy storage systems (BESS) is proposed. RKC can increase system’s inertia and release the rotational kinetic energy in rotors to provide dynamic support for the grid frequency. RKC frequency regulation capacity is restrained by wind speed. Therefore, BESSes with the ability to absorb and release energy quickly can be used to inhibit the frequency fluctuations, reduce system's steady-state frequency deviation and improve the dynamic frequency response. Finally, the control strategy is simulated based on DigSILENT/PowerFactory platform, which proves the rationality and effectiveness of the strategy.
文章引用:赵嘉兴, 高伟, 上官明霞, 查效兵, 岳帅. 基于转子动能控制和蓄电池储能系统共同作用的风电调频策略[J]. 智能电网, 2016, 6(6): 429-438. http://dx.doi.org/10.12677/SG.2016.66047

参考文献

[1] 徐涛. 2015年全球风电装机容量统计[C]. 风能产业, 2016.
[2] 薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报, 2014, 34(29): 5029- 5040.
[3] Lee, K.S., Kim, M.K., Lee, K.S., et al. (2014) A Study on Fre-quency Control and Active Power Control of Wind Turbine Generation System for PMSG. Transactions of the Korean Institute of Electrical Engineers, 63,597-607.
https://doi.org/10.5370/KIEE.2014.63.5.597
[4] 唐西胜, 苗福丰, 齐智平, 等. 风力发电的调频技术研究综述[J]. 中国电机工程学报, 2014, 34(25): 4304-4314.
[5] Morren, J., De-Haan, S.W.H., Kling, W.L., et al. (2006) Wind Turbines Emulating Inertia and Supporting Primary Frequency Control. IEEE Transactions on Power Systems, 21, 433-434.
https://doi.org/10.1109/TPWRS.2005.861956
[6] 田新首, 王伟胜, 迟永宁, 等. 基于双馈风电机组有效储能的变参数虚拟惯量控制[J]. 电力系统自动化, 2015, 39(5): 20-26.
[7] Vidyanandan, K.V. and Senroy, N. (2013) Primary Frequency Regulation by Deloaded Wind Turbines Using Variable Droop. IEEE Transactions on Power Systems, 28, 837-846.
https://doi.org/10.1109/TPWRS.2012.2208233
[8] 潘文霞, 全锐, 王飞. 基于双馈风电机组的变下垂系数控制策略[J]. 电力系统自动化, 2015, 39(11): 126-131.
[9] 邹贤求, 吴政球, 陈波, 等. 变速恒频双馈风电机组频率控制策略的改进[J]. 电力系统及其自动化学报, 2011, 23(3): 63-68.
[10] Elitani, S., Annakkage, U.D. and Joos, G. (2011) Short-Term Frequency Support Utilizing Inertial Response of DFIG Wind Turbines. IEEE Power and Energy Society General Meeting, America, 24-29 July 2011, 1-8.
[11] 刘巨, 姚伟, 文劲宇, 等. 大规模风电参与系统频率调整的技术展望[J]. 电网技术, 2014, 38(3): 638-646.
[12] 刘世林, 文劲宇, 孙海顺. 适用于风电功率调控的复合储能系统及其控制策略[J]. 中国电机工程学报, 2015(1): 95-102.
[13] Vidyanandan, K.V. and Senroy, N. (2016) Frequency Regulation in a Wind-Diesel Powered Microgrid Using Flywheels and Fuel Cells. IET Generation Transmission & Distribution, 10, 780-788.
https://doi.org/10.1049/iet-gtd.2015.0449
[14] 郭园园, 潘文霞, 冯博. 结合风功率预测的电池参与调峰控制策略[J]. 电力系统及其自动化学报, 2013, 25(5): 50-53.
[15] 张新松, 顾菊平, 袁越, 等. 基于电池储能系统的风功率波动平抑策略[J]. 中国电机工程学报, 2014, 34(28): 4752-4760.
[16] Miao, L., Wen, J.Y., Xie, H.L., et al. (2015) Coordinated Control Strategy of Wind Turbine Generator and Energy Storage Equipment for Frequency Support. Industry Applications Society Meeting, USA, 18-22 October 2015, 1-7.
https://doi.org/10.1109/tia.2015.2394435
[17] 肖硕霜. 带蓄电池储能的风电机组并网控制研究[D]: [硕士学位论文]. 北京: 华北电力大学, 2013.