天基单光子三维成像激光雷达系统中激光器高重频优化研究
Laser Optimum High Repetition Rate Research for Spaceborne Single Photon 3D Imaging Laser Radar System
DOI: 10.12677/HJWC.2016.66018, PDF, HTML, XML,  被引量 下载: 1,734  浏览: 3,415  科研立项经费支持
作者: 李 鑫, 宋 涛, 邓小飞, 刘 阳:上海卫星工程研究所,上海
关键词: 激光雷达三维成像单光子探测高重频Laser Radar 3D Imaging Single Photon Detection High Repetition Rate
摘要: 天基激光三维成像系统充分利用了激光能量密度高、方向性好的优势,在主动探测过程中可以获得比微波雷达更高的成像精度,在军事、民用等方面具有极高的应用价值。由于星载激光器功率受限,星地链路距离长,因此其探测体制为单光子探测。对于单光子探测来说,为了达到较高的探测概率,需采用多脉冲探测体制。高重频窄脉冲的激光器技术是天基激光三维成像系统的关键技术之一。受我国现有激光器技术限制,星载固体激光器的重频达到KHz以上难度极大。本文针对天基激光三维成像系统,对激光重频和卫星飞行速度、轨道高度间的关系进行了建模,并给出了激光重频和单光子系统探测概率间的关系,得到最佳激光重频与系统探测概率、卫星轨道高度、飞行速度等参数间的制约关系。本文研究结果对于激光三维成像雷达系统的优化设计给出了理论依据。
Abstract: Spaceborne 3D imaging laser radar system takes full advantage of laser such as high energy density and good directivity, resulting in attractive feature of high imaging resolution, which has outstand-ing value in military and commercial applications. Subject to the limited power of spaceborne laser, it is necessary to adopt single photon detection due to the extremely long link distance. For single photon detection system, multi pulse detection can improve the detection probability. High reple-tion rate laser is one of the key technologies, and the current highest repletion rate of solid state la-ser is about several kHz. In this paper, the model of optimum laser repletion rate is built with con-sideration of satellite orbit velocity, orbit height, and system surface resolution. What is achieved in this dissertation contributes to the spaceborne 3D imaging laser radar system optimal design.
文章引用:李鑫, 宋涛, 邓小飞, 刘阳. 天基单光子三维成像激光雷达系统中激光器高重频优化研究[J]. 无线通信, 2016, 6(6): 142-150. http://dx.doi.org/10.12677/HJWC.2016.66018

参考文献

[1] Manamon, P.F. (2010) A History of Laser Radar in the United State. Proceedings of SPIE, 7684, 76840T.
[2] Molebny, V., Ka-merman, G. and Steinvall, O. (2010) Laser Radar: From Early History to New Trends. Proceedings of SPIE, 7835, 783502.
[3] Molebny, V., Zarubin, P. and Kamerman, G. (2010) The Dawn of Optical Radar: A Story from Another Side of the Globe. Proceedings of SPIE, 7684, 76840B. https://doi.org/10.1117/12.850086
[4] Jin, C.F., Sun, X.D., Zhao, Y., Zhang, Y. and Liu, L.P. (2009) Gain-Modulated Three-Dimensional Active Imaging with Depth-Independent Depth Accuracy. Optics Letters, 34, 3550-3552. https://doi.org/10.1364/OL.34.003550
[5] Zhang, X.D. and Yan, H.M. (2011) Three-Dimensional Active Imaging with Maximum Depth Range. Applied Optics, 50, 1682-1686.
[6] Xia, G.F. and Zhao, B.J. (2007) Detection of Air Target Based on Multi-Fractal Analysis in A Laser Radar. Chinese Optics Letters, 5, 51-53.
[7] Totems, J., Jolivet, V. and Ovarlez, J.P. (2010) Ad-vanced Signal Processing Methods for Pulsed Laser Vibrometry. Applied Optics, 49, 3967-3978. https://doi.org/10.1364/AO.49.003967
[8] Cottin, P., Babin, F., Cantin, D., Deslauriers, A. and Sylvestre, B. (2010) Active 3D Camera Design for Target Capture on Mars Orbit. Proceedings of SPIE, 7684, 768403. https://doi.org/10.1117/12.850169
[9] Redman, B.C., Stann, B., Lawler, W., et al. (2006) Chirped AM Ladar for Anti-Ship Missile Tracking and Force Protection 3D Imaging: Update. Proceedings of SPIE, 6241, 62410O. https://doi.org/10.1117/12.666961
[10] Markus, H. (2005) Detection Probabilities for Photon Counting Avalanche Photodiodes Ap-plied to a Laser Radar System. Applied Optics, 44, 5140-5147. https://doi.org/10.1364/AO.44.005140