鲑鱼降钙素PLGA微球缓释载体
Salmon Calcitonin-Loaded PLGA Microspheres as a Sustained-Release Vehicle
DOI: 10.12677/HJBM.2017.71001, PDF, HTML, XML, 下载: 1,576  浏览: 3,091 
作者: 吴瑞雪:复旦大学生命科学学院,上海
关键词: PLGA微球鲑鱼降钙素缓释PLGA Microsphere Salmon Calcitonin Sustained Release
摘要: 本文制备六种不同分子量和末端基团的载鲑鱼降钙素PLGA微球(SCT-PLGA MS),优选合适微球用于废用性骨质疏松症在骨折损伤部位缓释药物。载药微球平均粒径均为120 μm,形态圆整;包封率均高于60%,载药量约为0.5%;差示扫描量热(DSC)测试结果表明SCT包载在于PLGA微球中,并以无定形态存在;体外释放结果表明分子量为20 kDa的-COOH末端载药微球(SCT-PLGA-20 COOH MS) 40 天累积释放百分率达79%以上,具有良好的缓释作用;体外降解中SCT-PLGA-20 COOH MS pH值随时间延长下降速率高于其他微球。因此,本研究中SCT-PLGA-20 COOH MS有望用于治疗废用性骨质疏松症。
Abstract: In this study, to optimize appropriate poly(d,l-lactic-co-glycolic acid) microspheres (PLGA MS) to release SCT in the treatment of disuse osteoporosis, six kinds of SCT-PLGA MS with different mo-lecular weight and terminal groups were prepared. SCT-PLGA MS had an average particle size of about 120 μm, an encapsulation efficiency of 60%, and a drug loading of 0.5%. The result of differential scanning calorimetry (DSC) evidenced that SCT had been entrapped as an amorphous form in MS matrix. For SCT-PLGA-20 COOH MS, the cumulative release was above 79% at 40 d. PH value of SCT-PLGA-20 COOH MS decreased more rapidly than that of MS with -CH3 in the degradation. In conclusion, SCT-PLGA-20 COOH MS is promising in the treatment of disuse osteoporosis.
文章引用:吴瑞雪. 鲑鱼降钙素PLGA微球缓释载体[J]. 生物医学, 2017, 7(1): 1-8. http://dx.doi.org/10.12677/HJBM.2017.71001

参考文献

[1] Glowka, E., Sapin-Minet, A., Leroy, P., et al. (2010) Preparation and in Vitro-in Vivo Evaluation of Salmon Calcitonin-Loaded Polymeric Nanoparticles. Journal of Microencapsulation, 27, 25-36.
https://doi.org/10.3109/02652040902751125
[2] Zhang, Z., Kuijer, R., Bulstra, S.K., et al. (2006) The in Vivo and in Vitro Degradation Behavior of Poly(trimethylene carbonate). Biomaterials, 27, 1741-1748.
https://doi.org/10.1016/j.biomaterials.2005.09.017
[3] Roy, A., Jhunjhunwala, S., Bayer, E., et al. (2016) Porous Calcium Phosphate-Poly (Lactic-Co-Glycolic) Acid Composite Bone Cement, a Viabe Tunable Drug Delivery System. Materials Science and Engineering C, 59, 92-101.
https://doi.org/10.1016/j.msec.2015.09.081
[4] Cai, C., Mao, S., Germershaus, O., et al. (2009) Influence of Morphology and Drug Distribution on the Release Process of FITC-Dextran-Loaded Microspheres Prepared with Different Types of PLGA. Journal of Microencapsulation, 26, 334-345.
https://doi.org/10.1080/02652040802354707
[5] Tzeng, C.W., Yen, F.L., Wu, T.H., et al. (2011) Enhancement of Dissolution and Antioxidant Activity of Kaempferol Using a Nanoparticle Engineering Process. Journal of Agricultural and Food Chemistry, 59, 5073-5080.
https://doi.org/10.1021/jf200354y
[6] Cheng, W.P., Thompson, C., Ryan, S.M., et al. (2010) In Vitro and in Vivo Characterisation of a Novel Peptide Delivery System, Amphiphilic Polyelectrolyte-Salmon Calcitonin Nanocomplexes. Journal of Controlled Release, 147, 289-297.
https://doi.org/10.1016/j.jconrel.2010.07.128
[7] Liu, Q., Zhang, H., Zhou, G., et al. (2010) In Vitro and in Vivo Study of Thymosin Alpha1 Biodegradable in Situ Forming Poly(lactide-co-glycolide) Implants. International Journal of Pharmaceutics, 397, 122-129.
https://doi.org/10.1016/j.ijpharm.2010.07.015
[8] Diaz, R.V., Llabrés, M. and Evora, C. (1999) One-Month Sustained Release Microspheres of I-125-Bovine Calcitonin-In Vitro-in Vivo Studies. Journal of Controlled Release, 59, 55-62.
https://doi.org/10.1016/S0168-3659(98)00179-5
[9] Giovagnoli, S., Blasi, P., Ricci, M., et al. (2004) Biodegradable Microspheres as Carriers for Native Superoxide Dismutase and Catalase Delivery. AAPS PharmSciTech, 5, e51.
https://doi.org/10.1208/pt050451
[10] Ghalanbor, Z., Körber, M. and Bodmeier, R. (2013) Interdependency of Protein-Release Completeness and Polymer Degradation in PLGA-Based Implants. European Journal of Pharmaceutics and Biopharmaceutics, 85, 624-630.
https://doi.org/10.1016/j.ejpb.2013.03.031
[11] Selmin, F., Blasi, P., and De Luca, P.P. (2012) Accelerated Polymer Biodegradation of Risperidone Poly (D,L-lactide-co-glycolide) Microspheres. AAPS PharmSciTech, 13, 1465-1472.
https://doi.org/10.1208/s12249-012-9874-4
[12] Samadi, N., Abbadessa, A., Di Stefano, A., et al. (2013) The Effect of Lauryl Capping Group on Protein Release and Degradation of Poly(D,L-lactic-co-glycolic acid) Particles. Journal of Controlled Release, 172, 436-443.
https://doi.org/10.1016/j.jconrel.2013.05.034
[13] Sawamura, T., Mizutani, Y., Okuyama, M., et al. (2014) Setting Time and Formability of Calcium Phosphate Cements Prepared Using Modified Dicalcium Phosphate Anhydrous Powders. Journal of Materials Science Materials in Medicine, 25, 1631-1636.
https://doi.org/10.1007/s10856-014-5209-1