无资料感潮河段设计洪水位计算
Design Water Level Calculation for Tidal River in Ungauged Basins
DOI: 10.12677/JWRR.2017.61009, PDF, HTML, XML, 下载: 1,593  浏览: 4,174 
作者: 胡进宝, 王晓霞:中国电力工程顾问集团西北电力设计院有限公司,陕西 西安 ;刘海成, 管 宁:交通运输部天津水运工程科学研究所,天津
关键词: 感潮河段设计洪水位无资料Tidal Reach Design Water Level Ungauged Basins
摘要: 感潮河段的洪水过程由于既受上游河道径流和下游潮汐的双重作用,使感潮河段的水文情势尤为复杂。本文针对无资料感潮河段设计洪水位计算,提出根据短期潮位对比观测,通过准同步比较,将长期潮位观测站逐年实测潮位资料转引至工程海域后,对逐年的极端高潮位采用PIII型频率曲线进行适线计算,得到不同频率设计高潮位,从而解决不同频率潮位计算问题;针对河流洪水计算,由于缺乏实测河流流量资料,采用水库最大下泄流量加区间流量作为上游流量边界,采用一般大潮高潮位作为下游水位边界,同时对河口地形根据不同时期影像资料进行了适当假定,采用水动力模型进行了河流洪水计算,得到满足工程需要的设计洪水位;上述所述方法对无资料感潮河段设计洪水位计算提供了重要参考。
Abstract: The hydrological regime of the tidal reach is complicated because it’s influenced by both the upstream runoff and the downstream tide. This paper focuses on the design water level calculation for tidal river in ungauged basin based on the short-term tidal level observation, the long term tidal observation and short term tidal level observation relationship. After the quasi-synchronous comparison, the tidal level data of long-term tide observation stations are transferred to the engineering sea area. By using the P-III frequency curve, the extreme tidal level of each year is estimated for different design tide levels. As a result, the problem of different frequency tide calculation is solved. As to the river flood design water level calculation, because the lack of observation river flow data, the maximum reservoir discharge flow and interval flow is used as the upstream flow boundary conditions, the average high tidal level is used as the downstream water level conditions. Besides, based on different time of the remote sense image at the estuary, the rational assumptions of estuarine topography is put forward using the hydrodynamics model, the design water level satisfied the project need is calculated. The above-mentioned methods provide an important reference for the calculation of the design flood level of tidal reach inungauged basins.
文章引用:胡进宝, 刘海成, 王晓霞, 管宁. 无资料感潮河段设计洪水位计算[J]. 水资源研究, 2017, 6(1): 66-70. https://doi.org/10.12677/JWRR.2017.61009

参考文献

[1] 林炳尧, 黄世昌, 毛献忠, 等. 钱塘江河口潮波变化过程[J]. 水动力学研究与进展, A辑, 2002, 17(6): 665-675. LIN Bingyao, HUANG Shichang, MAO Xianzhong, et al. Deformation process of tidal waves in Qingtang Estuary. Journal of Hydrodynamics Ser. A, 2002, 17(6): 665-675. (in Chinese)
[2] 徐祖信, 卢士强. 平原感潮河网水动力学模型研究[J]. 水动力学研究与进展, A辑, 2003, 18(2): 176-181. XU Zuxin, LU Shiqiang. Hydrodynamics model for tidal river network. Journal of Hydrodynamics Ser. A, 2003, 18(2): 176- 181. (in Chinese)
[3] 赖锡军, 汪德爟. 非恒定水流的一维、二维耦合数值模型[J]. 水利水运工程学报, 2003(2): 48-51. LAI Xijun, WANG Deguan. 1-D and 2-D coupling numerical model of unsteady flow. Hydro-Science and Engineering, 2003(2): 48-51. (in Chinese)
[4] 包为民, 卞毓明. 感潮河段水位演算模型研究[J]. 水利学报, 1997(11): 34-38. BAO Weimin, BIAN Yuming. Study on stage routing model of tidal-reach. Shuili Xuebao, 1997(11): 34-38. (in Chinese)
[5] 黄国如, 胡和平, 田富强. 用径向基函数神经网络模型预报感潮河段洪水位[J]. 水科学进展, 2003, 14(2): 158-162. HUANG Guoru, HU Heping and TIAN Fuqiang. Flood level forecast model for tidal channel based on the radial basis function-artificial neural network. Advances in Water Science, 2003, 14(2): 158-162. (in Chinese)