吸附式海水淡化系统实验研究
Experimental Study of Adsorption Desalination System
DOI: 10.12677/OJNS.2017.51010, PDF, HTML, XML,  被引量 下载: 1,967  浏览: 5,275  国家科技经费支持
作者: 马洪亭, 林雪银, 苗壮壮:天津大学环境科学与工程学院,天津
关键词: 吸附式海水淡化回热回质实验分析运行性能淡化水水质Adsorption Desalination Heat and Mass Recovery Experimental Analysis Running Performance Product Water Quality
摘要: 目前国内吸附式海水淡化研究仍停留在理论层面,对实际装置研制及运行性能的分析未见报道。针对于此,本文设计并利用带有回热回质循环的吸附式海水淡化系统进行了实验,分析了系统运行性能,并对制取的淡化水进行检测。结果表明:在稳定工况下,系统的产水量达到5.7 kg/h。系统最佳循环周期为20 min。采用回热循环不能增加单位时间的产水量,每个回热循环能够回收热量1356.4 kJ。制取的淡化水除挥发酚类和氟化物外,其它指标均达到生活饮用水卫生标准限值的要求,各项特征与传统海水淡化技术淡化水的特征趋于一致。
Abstract: The domestic adsorption desalination technology research is still at the theoretical analysis level at present, while the study of actual device development and its performance has not been re-ported. This paper is performed to design the absorption desalination system with heat and mass recovery. The experiment was conducted, the running performance of the system was analyzed and the quality of product water was tested. The result shows that on the steady condition, the system water production reaches 5.7 kg/h and the optimal cycle time is 20 min. Although the heat recovery cycle utilized in the system hardly increases the water production per unit time, the heat recovery of each cycle is 1356.4 kJ. Except for the volatile phenols and fluorides, all other indicators of the product water quality meet the drinking water hygiene standards. Besides, the various characteristics of the product water tend to be consistent with the water produced by conventional desalination technology.
文章引用:马洪亭, 张靖宇, 刘超凡, 吕凡, 林雪银, 苗壮壮. 吸附式海水淡化系统实验研究[J]. 自然科学, 2017, 5(1): 65-72. https://doi.org/10.12677/OJNS.2017.51010

参考文献

[1] Srinivasan, K., Dutta, P., Saha, B.B., et al. (2013) Realistic Minimum Desorption Temperatures and Compressor Sizing for Activated Carbon + HFC 134a Adsorption Coolers. Applied Thermal Engineering, 51, 551–559.
https://doi.org/10.1016/j.applthermaleng.2012.09.028
[2] Ng, K.C., Thu, K., Saha, B.B., et al. (2012) Study on a Waste Heat-Driven Adsorption Cooling Cum Desalination Cycle. International Journal of Refrigeration, 35, 685-693.
https://doi.org/10.1016/j.ijrefrig.2011.01.008
[3] Ng, K.C., Thu, K., Oh, S.J., et al. (2015) Recent Developments in Thermally-Driven Seawater Desalination: Energy Efficiency Improvement by Hybridization of the MED and AD Cycles. Desalination, 356, 255-270.
https://doi.org/10.1016/j.desal.2014.10.025
[4] Thu, K., Saha, B.B., Chakraborty, A., et al. (2011) Study on an Advanced Adsorption Desalination Cycle with Evaporator-Condenser Heat Recovery Circuit. International Journal of Heat & Mass Transfer, 54, 43-51.
https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.065
[5] Zejli, D., Benchrifa, R., Bennouna, A., et al. (2004) A Solar Adsorption Desalination Device: First Simulation Results. Desalination, 168, 127-135.
https://doi.org/10.1016/j.desal.2004.06.178
[6] 曾辉, 王永青. 吸附式海水淡化技术及其研究和发展状况[J]. 机电技术, 2012(2): 136-139.
[7] 王永青, 何宏舟. 吸附式制冷–海水淡化复合系统性能分析[J]. 化工学报, 2014(S2): 115-121.