海带基微孔/介孔复合多级孔纳米炭的制备及电化学性能研究
Study on Synthesis and Electrochemical Performance of Micro-Mesoporous Nano-Carbon Derived from Seaweed as Electrode Material for Supercapacitors
DOI: 10.12677/NAT.2017.71002, PDF, HTML, XML, 下载: 2,173  浏览: 3,954  科研立项经费支持
作者: 宗飞旭, 潘 超*, 高静怡, 高兆辉:大连海洋大学理学院,辽宁 大连;董 丽*:大连民族大学理学院,辽宁 大连
关键词: 海带微孔/介孔纳米炭超级电容器电化学性能Seaweed Micro-Mesoporous Nano-Carbon Supercapacitor Electrochemical Performance
摘要: 以新鲜海带为前驱体,通过清洗、酸化和高温炭化过程制备了微孔/介孔复合多级孔炭纳米材料。采用SEM,TEM,N2吸脱附,Raman光谱和电化学测试对其结构和电化学性能进行了表征,结果表明海带基多孔炭性能好于商业活性炭,800℃焙烧获得的多孔炭材料具有最大的比表面积(1703.97 m2/g)和最佳的电化学性能,其在4 M的KOH电解液中,5 A/g电流密度下比电容高达200 F/g,并表现出极佳的循环稳定性。这可归因于高的比表面积和独特的微/介孔复合孔结构。
Abstract: The fresh seaweed is used as a natural precursor to prepare micro-mesoporous nano-carbon materials. The micro-mesoporous carbon was synthesized by washing, acidification and carbonization at different temperatures. The synthesized hierarchical micro-mesoporous carbon was characterized by SEM, TEM, BET, Raman and electrochemical measurement techniques. The results confirmed that such micro-mesoporous carbon possessed higher electrochemical capacitance than commercial active carbon. The porous carbons activated at 800˚C present high surface area (up to 1703.97 m2/g) and high specific capacitance of 200 F/g at a current density of 5 A/g, and superior cycling stability in a 4 M KOH aqueous solution. The good capacitive performance can be ascribed to the high specific surface area and well-controlled micro- and mesoporosity.
文章引用:宗飞旭, 潘超, 高静怡, 高兆辉, 董丽. 海带基微孔/介孔复合多级孔纳米炭的制备及电化学性能研究[J]. 纳米技术, 2017, 7(1): 11-20. https://doi.org/10.12677/NAT.2017.71002

参考文献

[1] Conway, B.E. (1999) Electrochemical Supercapacitors. Kluwer Academic/Plenum Publishers, New York.
https://doi.org/10.1007/978-1-4757-3058-6
[2] Kotz, R. and Carlen, M. (2000) Principles and Applications of Electrochemical Capacitors. Electrochimica Acta, 45, 2483-2498.
https://doi.org/10.1016/S0013-4686(00)00354-6
[3] Conway, B.E. (1991) Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage. Journal of The Electrochemical Society, 138, 1539-1548.
https://doi.org/10.1149/1.2085829
[4] Frackowiak, E. and Béguin, F. (2001) Carbon Materials for the Electrochemical Storage of Energy in Capacitors. Carbon, 39, 937-950.
https://doi.org/10.1016/S0008-6223(00)00183-4
[5] Frackowiak, E. (2007) Carbon Materials for Supercapacitor Application. Physical Chemistry Chemical Physics, 9, 1774-1785.
https://doi.org/10.1039/b618139m
[6] Salitra, G., Soffer, A., Eliad, L., Cohen, Y. and Aurbach, D. (2000) Carbon Electrodes for Double-Layer Capacitors I. Relations between Ion and Pore Dimensions. Journal of The Electrochemical Society, 147, 2486-2493.
https://doi.org/10.1149/1.1393557
[7] Barbieri, O., Hahn, M., Herzog, A. and Kotz, R. (2005) Capacitance Limits of High Surface Area Activated Carbons for Double Layer Capacitors. Carbon, 43, 1303-1310.
https://doi.org/10.1016/j.carbon.2005.01.001
[8] Yu, Z.F., Wang, X.Z., Zhou, S.K., Yang, L., Zhao, Z.B. and Qiu, J.S. (2016) A Facile Soft-Template Synthesis of Nitrogen Doped Mesoporous Carbons for Hydrogen Sulfide Removal. Adsorption, 22, 1075-1082.
https://doi.org/10.1007/s10450-016-9823-8
[9] Walcarius, A. (2013) Mesoporous Materials and Electrochemistry. Chemical Society Reviews, 42, 4098-4140.
https://doi.org/10.1039/c2cs35322a
[10] Ghosh, A. and Lee, Y.H. (2009) Carbon-Based Electrochemical Capacitors. Chemical Society Reviews, 38, 2520-2531.
[11] Shen, K., Chen, X.D., Chen, J.Y. and Li, Y.W. (2016) Development of MOF-Derived Carbon-Based Nanomaterials for Efficient Catalysis. ACS Catalysis, 6, 5887-5903.
https://doi.org/10.1021/acscatal.6b01222
[12] Yin, Y., Li, R., Li, Z., Liu, J., Gu, Z. and Wang, G. (2014) A Facile Self-Template Strategy to Fabricate Three-Di- mensional Nitrogen-Doped Hierarchical Porous Carbon/Graphene for Conductive Agent-Free Supercapacitors with Excellent Electrochemical Performance. Electrochimica Acta, 125, 330-337.
https://doi.org/10.1016/j.electacta.2014.01.123
[13] Wu, X.L., Wen, T., Guo, H.L., Yang, S.B., Wang, X.K. and Xu, A.W. (2013) Biomass-Derived Sponge-Like Carbonaceous Hydrogels and Aerogels for Supercapacitors. ACS Nano, 7, 3589-3597.
https://doi.org/10.1021/nn400566d
[14] He, X.J., Ling, P.H., Yu, M.X., Wang, X.T., Zhang, X.Y. and Zheng, M.D. (2013) Rice Husk-Derived Porous Carbons with High Capacitance by ZnCl2 Activation for Supercapacitors. Electrochimica Acta, 105, 635-641.
[15] Xu, F., Chen, Y.Q., Tang, M.H., Wang, H.Y., Deng, J. and Wang, Y. (2016) Acid Induced Self-Assembly Strategy to Synthesize Ordered Mesoporous Carbons from Biomass. ACS Sustainable Chemistry & Engineering, 4, 4473-4479.
https://doi.org/10.1021/acssuschemeng.6b01196
[16] Piñero, E.R., Cadek, M. and Béguin, F. (2009) Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds. Advanced Functional Materials, 19, 1032-1039.
https://doi.org/10.1002/adfm.200801057
[17] Song, M.Y., Park, H.Y., Yang, D.S., Bhattacharjya, D. and Yu, J.S. (2014) Seaweed-Derived Heteroatom-Doped Highly Porous as an Electrocatalyst for the Oxygen Reduction Reaction. ChemSusChem, 7, 1755-1763.
https://doi.org/10.1002/cssc.201400049
[18] Wu, X.Z., Xing, W., Florek, J., Zhou, J., Wang, G.Q., Zhuo, S.P., Xue, Q.Z., Yan, Z.F. and Kleitz, F. (2014) On the Origin of the High Capacitance of Carbon Derived from Seaweed with an Apparently Low Surface Area. Journal of Materials Chemistry A, 2, 18998-19004.
https://doi.org/10.1039/C4TA03430A
[19] Piñero, E.R., Leroux, F. and Béguin, F. (2006) A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer. Advanced Materials, 18, 1877-1882.
https://doi.org/10.1002/adma.200501905
[20] Ma, J., Xue, T. and Qin, X. (2014) Sugar-Derived Carbon/Graphene Composite Materials as Electrodes for Supercapacitors. Electrochimica Acta, 115, 566-572.
https://doi.org/10.1016/j.electacta.2013.11.028
[21] Campos, J.W., Beidaghi, M., Hatzell, K.B., Dennison, C.R., Musci, B., Presser, V., Kumbur, E.C. and Gogotsi, Y. (2013) Investigation of Carbon Materials for Use as a Flowable Electrode in Electrochemical Flow Capacitors. Electrochimica Acta, 98, 123-130.
https://doi.org/10.1016/j.electacta.2013.03.037
[22] Zhang, C., Hatzell, K.B., Boota, M., Dyatkin, B., Beidaghi, M., Long, D., Qiao, W., Kumbur, E.C. and Gogots, Y. (2014) Highly Porous Carbon Spheres for Electrochemical Capacitors and Capacitive Flowable Suspension Electrodes. Carbon, 77, 155-164.
https://doi.org/10.1016/j.carbon.2014.05.017
[23] Eliad, L., Salitra, G., Soffer, A. and Aurbach, D. (2001) Ion Sieving Effects in the Electrical Double Layer of Porous Carbon Electrodes: Estimating Effective Ion Size in Electrolytic Solutions. The Journal of Physical Chemistry B, 105, 6880-6887.
https://doi.org/10.1021/jp010086y