单元极化特性对顺序旋转圆极化阵列性能的影响
Effects of Element Polarization Property on Performance of Sequentially-Rotated Circularly-Polarized Arrays
DOI: 10.12677/JA.2016.52002, PDF, HTML, XML, 下载: 1,957  浏览: 5,138  国家科技经费支持
作者: 王道雨, 汪敏, 吴跃敏, 吴文:南京理工大学JGMT国防重点学科实验室,江苏 南京
关键词: 顺序旋转阵列极化单元带宽性能增益比较间距选择Sequentially-Rotated Arrays Polarized Elements Bandwidth Performance Gains Comparison Spacing Selection
摘要: 本文对采用不同极化单元的顺序旋转阵列进行了研究。顺序旋转阵列可以采用线极化或圆极化贴片作为单元,且不同极化特性的单元对阵列性能有着不同的影响,这里分别利用线极化单元和圆极化单元顺序旋转组阵,构成2 × 2阵列,研究了两种阵列的带宽及增益等性能。结合理论分析与仿真结果,得出结论:两种阵列均能很好地展宽带宽,而采用线极化单元顺序旋转组阵的增益要比采用圆极化单元少将近3 dB,但是前者的增益带宽要更宽。最后研究了采用不同极化单元时顺序旋转阵列间距对阵列性能的影响,分析了最优间距的获取。
Abstract: Sequentially-rotated (SR) arrays with elements having different polarization properties are studied in this paper. Linearly-polarized (LP) or circularly-polarized (CP) patches can both be used as elements of SR arrays, and have different effects on array performance. Two 2 by 2 SR arrays are constituted by LP and CP elements, respectively. Then, the bandwidth and gain performances of two arrays are studied. Theoretical analysis and simulation research are conducted. It is demonstrated that the arrays can broaden the bandwidth significantly. However, the gain of the SR array with LP elements is about 3 dB lower than that with CP elements, but gain bandwidth of the former array is wider. Finally, effects of the element spacing on SR arrays are studied with different polarized elements and the optimal spacing selection is analyzed.
文章引用:王道雨, 汪敏, 吴跃敏, 吴文. 单元极化特性对顺序旋转圆极化阵列性能的影响[J]. 天线学报, 2016, 5(2): 9-17. http://dx.doi.org/10.12677/JA.2016.52002

参考文献

[1] Teshirgoi, T., Tanaka, M. and Chujo, W. (1985) Wideband Circularly Polarized Array Antenna with Sequential Ratations and Phase Shift of Elements. Proceeding of the International Symposium on Antennas Propagation, Tokyo, Japan, August 1985, 136-139.
[2] Huang, J. (1986) A Technique for an Array to Generate Circular Polarization with Linearly Polarized Elements. IEEE Transactions on Antennas and Propagation, 34, 1113-1124.
https://doi.org/10.1109/TAP.1986.1143953
[3] Hall, P.S.. Dahele, J.S. and James, J.R. (1989) Design Principles of Sequentially Fed, Wide Bandwidth, Circularly Polarized Microstrip Antennas. IEE Proceedings, 136, 381-389.
[4] Hall, P.S. (1989) Application of Sequential Feeding to Wide Bandwidth Circularly Polarized Microstrip Patch Arrays. IEE Proceedings, 136, 390-398.
[5] Zhang, T., Hong, W. and Wu, K. (2015) Analysis and Optimum Design of Sequential-Rotation Array for Gain Bandwidth Enhancement. IEEE Transactions on Antennas and Propagation, 63, 142-150.
https://doi.org/10.1109/TAP.2014.2367507
[6] Maddio, S. (2015) A Compact Wideband Circularly Polarized Antenna Array for C-band Applications. IEEE Antennas and Wireless Propagation Letters, 14, 1081-1084.
https://doi.org/10.1109/LAWP.2015.2392387
[7] Chen, A.X., Zhang, Y.J., Chen, Z.Z., et al. (2011) Development of Ka-Band Wideband Circularly Polarized 64-Element Microstrip Antenna Array With Double Application of the Sequential Rotation Feeding Technique. IEEE Antennas and Wireless Propagation Letters, 10, 1270-1273.
https://doi.org/10.1109/LAWP.2011.2175433
[8] Palmer, K.D., Cloete, J.H. and van Tonder, J.J. (1992) Bandwidth Improvement of Circularly Polarised Arrays Using Sequential Rotation. Antennas and Propagation Society International Symposium, 135-138.
https://doi.org/10.1109/aps.1992.221983
[9] Jazi, M.N. and Azarmanesh, M.N. (2006) Design and Implementation of Circularly Polarized Microstrip Antenna Array Using a New Serial Feed Sequentially Rotated Technique. IEE Proceedings-Microwaves, Antennas and Propagation, 153, 133-140.
https://doi.org/10.1049/ip-map:20050005
[10] Hall, P.S. and Huang, J. (1989) Gain of Circularly Polarized Arrays Composed of Linearly Polarized Arrays. Electronics Letters, 25, 124-125.
https://doi.org/10.1049/el:19890091