记忆遗忘的电生理机制
The Electrophysiological Correlates of Forgetting
DOI: 10.12677/AP.2017.73039, PDF, HTML, XML, 下载: 1,985  浏览: 2,665  国家自然科学基金支持
作者: 王孟颖, 雷 旭:西南大学心理学部,重庆
关键词: 记忆遗忘电生理机制EEGERPMemory Forgetting Electrophysiological Mechanism EEG ERP
摘要: 记忆中不可避免的会存储一些令人厌恶或不愉快的信息,这些信息会对人们的社会适应和心理状态产生诸多消极影响。因此,人们通常会被动或主动的对不想要的记忆进行限制,这种限制可能体现在编码阶段,也可能体现在线索诱发提取阶段。本研究对遗忘过程中的脑电成分和节律活动特征进行概括,旨在找到遗忘的特异性电生理标志。我们发现,遗忘过程主要体现在N2振幅的增加,alpha能量的增强,晚正成分(LPC)减少,theta能量和同步性下降,以及alpha/beta频带间同步性下降,并且以上变化可以预测后续遗忘的成功发生。因此,遗忘可以通过特定的电生理机制来反映,进一步也可能从电生理现象反推遗忘对应的认知过程。
Abstract: Not all memories are equally welcome in awareness. It is inevitably that human memory would store some disgusting or unwanted information; the information may have negative effects on people’s social adaptability and psychological states. People usually limit the time they spend on thinking about unwanted experiences, a process that begins during encoding, but continues when later reminded by some cues. This study summarizes the electrophysiological components and rhythmic characteristics during the process of motivated forgetting, aiming to reveal the specific electrophysiological indicators of forgetting. And we find that the process of forgetting mainly embodied some changes such as the increase of N2 amplitude, the enhanced power of alpha band, the reduction of theta power and its synchronicity, and the decline of synchronicity between alpha and beta band. While those changes can further successfully predict the occurrence of motivated forgetting. Therefore, the forgetting can be reflected by specific electrophysiological mechanism. And the following researchers may speculate the corresponding cognitive process through the electrophysiological phenomenon.
文章引用:王孟颖, 雷旭 (2017). 记忆遗忘的电生理机制. 心理学进展, 7(3), 300-311. https://doi.org/10.12677/AP.2017.73039

参考文献

[1] 陈雨, 周曙. 硕士研究生定向遗忘的事件相关电位研究[J]. 中华行为医学与脑科学杂志, 2011, 20(6), 528-530.
[2] 刘旭(2013). 提取诱发遗忘的发展及其机制研究. 博士论文, 天津: 天津师范大学.
[3] 慕德芳, 宋耀武, 陈英和(2009). 定向遗忘中提取抑制的机制: 成功提取引起抑制. 心理学报, 41(1), 26-34.
[4] 沈汪兵, 刘昌, 王永娟(2009). 提取抑制: 来自听觉定向遗忘的证据. 心理与行为研究, 7(4), 269-273.
[5] 杨文静, 杨金华, 肖宵, 张庆林(2012). 负性情绪材料的定向遗忘及心理机制. 心理科学, 35(1), 50-55.
[6] 朱永泽, 毛伟宾, 赵浩远,李玉婷(2015). 有意遗忘的脑机制. 心理科学, 38(3), 580-585.
[7] Anderson, M. C., & Green, C. (2001). Suppressing Unwanted Memories by Executive Control. Nature, 410, 366-369.
https://doi.org/10.1038/35066572
[8] Anderson, M. C., & Hanslmayr, S. (2014). Neural Mechanisms of Motivated Forgetting. Trends in Cognitive Sciences, 18, 279-292.
https://doi.org/10.1016/j.tics.2014.03.002
[9] Anderson, M. C., Bjork, R. A., & Bjork, E. L. (1994). Remembering Can Cause Forgetting: Retrieval Dynamics in Long-Term Memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 1063.
https://doi.org/10.1037/0278-7393.20.5.1063
[10] Anderson, M. C., Ochsner, K. N., Kuhl, B., Cooper, J., Robertson, E., Gabrieli, S. W., Gabrieli, J. D. et al. (2004). Neural Systems Underlying the Suppression of Unwanted Memories. Science, 303, 232-235.
https://doi.org/10.1126/science.1089504
[11] Bergstrom, Z. M., de Fockert, J. W., & Richardson-Klavehn, A. (2009). ERP and Behavioural Evidence for Direct Suppression of Unwanted Memories. Neuroimage, 48, 726-737.
https://doi.org/10.1016/j.neuroimage.2009.06.051
[12] Bergström, Z. M., de Fockert, J., & Richardson-Klavehn, A. (2009). Event-Related Potential Evidence That Automatic Recollection Can Be Voluntarily Avoided. Journal of Cognitive Neuroscience, 21, 1280-1301.
https://doi.org/10.1162/jocn.2009.21075
[13] Bergstrom, Z. M., Velmans, M., de Fockert, J., & Richardson-Klavehn, A. (2007). ERP Evidence for Successful Voluntary Avoidance of Conscious Recollection. Brain Research, 1151, 119-133.
https://doi.org/10.1016/j.brainres.2007.03.014
[14] Brown, A. D., Kramer, M. E., Romano, T. A., & Hirst, W. (2012). Forgetting Trauma: Socially Shared Retrieval-Induced Forgetting and Post-Traumatic Stress Disorder. Applied Cognitive Psychology, 26, 24-34.
https://doi.org/10.1002/acp.1791
[15] Buzsaki, G. (2006). Rhythms of the Brain. Oxford: Oxford University Press.
https://doi.org/10.1093/acprof:oso/9780195301069.001.0001
[16] Chen, C., Liu, C., Huang, R., Cheng, D., Wu, H., Xu, P., Luo, Y.-J. et al. (2012). Suppression of Aversive Memories Associates with Changes in Early and Late Stages of Neurocognitive Processing. Neuropsychologia, 50, 2839-2848.
https://doi.org/10.1016/j.neuropsychologia.2012.08.004
[17] Cheng, S.-K., Liu, I. C., Lee, J. R., Hung, D. L., & Tzeng, O. J. L. (2012). Intentional Forgetting Might Be More Effortful Than Remembering: An ERP Study of Item-Method Directed Forgetting. Biological Psychology, 89, 283-292.
https://doi.org/10.1016/j.biopsycho.2011.10.019
[18] Chiu, Y. C., & Egner, T. (2015a). Inhibition-Induced Forgetting Results from Resource Competition between Response Inhibition and Memory Encoding Processes. Journal of Neuroscience, 35, 11936-11945.
https://doi.org/10.1523/JNEUROSCI.0519-15.2015
[19] Chiu, Y. C., & Egner, T. (2015b). Inhibition-Induced Forgetting: When More Control Leads to Less Memory. Psychological Science, 26, 27-38.
https://doi.org/10.1177/0956797614553945
[20] Depue, B. E., Banich, M. T., & Curran, T. (2006). Suppression of Emotional and Nonemotional Content in Memory Effects of Repetition on Cognitive Control. Psychological Science, 17, 441-447.
https://doi.org/10.1111/j.1467-9280.2006.01725.x
[21] Depue, B. E., Ketz, N., Mollison, M. V., Nyhus, E., Banich, M. T., & Curran, T. (2013). ERPs and Neural Oscillations during Volitional Suppression of Memory Retrieval. Journal of Cognitive Neuroscience, 25, 1624-1633.
https://doi.org/10.1162/jocn_a_00418
[22] Düzel, E., Habib, R., Rotte, M., Guderian, S., Tulving, E., & Heinze, H.-J. (2003). Human Hippocampal and Parahippocampal Activity during Visual Associative Recognition Memory for Spatial and Nonspatial Stimulus Configurations. The Journal of Neuroscience, 23, 9439-9444.
[23] Eichenbaum, H. (2001). The Hippocampus and Declarative Memory: Cognitive Mechanisms and Neural Codes. Behavioural Brain Research, 127, 199-207.
https://doi.org/10.1016/S0166-4328(01)00365-5
[24] Fawcett, J. M., & Taylor, T. L. (2008). Forgetting is Effortful: Evidence from Reaction Time Probes in an Item-Method Directed Forgetting Task. Memory & Cognition, 36, 1168-1181.
https://doi.org/10.3758/MC.36.6.1168
[25] Folstein, J. R., & Van Petten, C. (2008). Influence of Cognitive Control and Mismatch on the N2 Component of the ERP: A Review. Psychophysiology, 45, 152-170.
[26] Freyd, J. J. (1994). Betrayal Trauma: Traumatic Amnesia as an Adaptive Response to Childhood Abuse. Ethics & Behavior, 4, 307-329.
https://doi.org/10.1207/s15327019eb0404_1
[27] Gallant, S. N., & Dyson, B. J. (2016). Neural Modulation of Directed Forgetting by Valence and Arousal: An Event-Related Potential Study. Brain Research, 1648, 306-316.
https://doi.org/10.1016/j.brainres.2016.08.009
[28] Geiselman, R. E., & Bagheri, B. (1985). Repetition Effects in Directed Forgetting: Evidence for Retrieval Inhibition. Memory & Cognition, 13, 57-62.
https://doi.org/10.3758/BF03198444
[29] Handy, T. C. (2005). Event-Related Potentials: A Methods Handbook. Cambridge: MIT Press.
[30] Hanslmayr, S., Leipold, P., & Bäuml, K.-H. (2010). Anticipation Boosts Forgetting of Voluntarily Suppressed Memories. Memory, 18, 252-257.
https://doi.org/10.1080/09658210903476548
[31] Hanslmayr, S., Leipold, P., Pastötter, B., & Bäuml, K.-H. (2009). Anticipatory Signatures of Voluntary Memory Suppression. The Journal of Neuroscience, 29, 2742-2747.
https://doi.org/10.1523/JNEUROSCI.4703-08.2009
[32] Hanslmayr, S., Spitzer, B., & Bäuml, K.-H. (2009). Brain Oscillations Dissociate between Semantic and Nonsemantic Encoding of Episodic Memories. Cerebral Cortex, 19, 1631-1640.
https://doi.org/10.1093/cercor/bhn197
[33] Hanslmayr, S., Volberg, G., Wimber, M., Oehler, N., Staudigl, T., Hartmann, T., Bauml, K. H. et al (2012). Prefrontally Driven Downregulation of Neural Synchrony Mediates Goal-Directed Forgetting. Journal of Neuroscience, 32, 14742-14751.
https://doi.org/10.1523/JNEUROSCI.1777-12.2012
[34] Hanslmayr, S., Volberg, G., Wimber, M., Raabe, M., Greenlee, M. W., & Bauml, K. H. (2011). The Relationship between Brain Oscillations and BOLD Signal during Memory Formation: A Combined EEG-fMRI Study. Journal of Neuroscience, 31, 15674-15680.
https://doi.org/10.1523/JNEUROSCI.3140-11.2011
[35] Hauswald, A., & Kissler, J. (2008). Directed Forgetting of Complex Pictures in an Item Method Paradigm. Memory, 16, 797-809.
https://doi.org/10.1080/09658210802169087
[36] Jensen, O., & Mazaheri, A. (2010). Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition. Frontiers in Human Neuroscience, 4, 186.
https://doi.org/10.3389/fnhum.2010.00186
[37] Jensen, O., Kaiser, J., & Lachaux, J.-P. (2007). Human Gam-ma-Frequency Oscillations Associated with Attention and Memory. Trends in neurosciences, 30, 317-324.
https://doi.org/10.1016/j.tins.2007.05.001
[38] Ketz, N., O’Reilly, R. C., & Curran, T. (2014). Classification Aided Analysis of Oscillatory Signatures in Controlled Retrieval. Neuroimage, 85, 749-760.
https://doi.org/10.1016/j.neuroimage.2013.06.077
[39] Khader, P. H., & Rösler, F. (2011). EEG Power Changes Reflect Distinct Mechanisms during Long-Term Memory Retrieval. Psychophysiology, 48, 362-369.
https://doi.org/10.1111/j.1469-8986.2010.01063.x
[40] Klimesch, W., Freunberger, R., & Sauseng, P. (2010). Oscillatory Mechanisms of Process Binding in Memory. Neuroscience & Biobehavioral Reviews, 34, 1002-1014.
https://doi.org/10.1016/j.neubiorev.2009.10.004
[41] Klimesch, W., Freunberger, R., Sauseng, P., & Gruber, W. (2008). A Short Review of Slow Phase Synchronization and Memory: Evidence for Control Processes in Different Memory Systems? Brain Research, 1235, 31-44.
https://doi.org/10.1016/j.brainres.2008.06.049
[42] Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG Alpha Oscillations: The Inhibition-Timing Hypothesis. Brain Research Reviews, 53, 63-88.
https://doi.org/10.1016/j.brainresrev.2006.06.003
[43] Kupper, C. S., Benoit, R. G., Dalgleish, T., & Anderson, M. C. (2014). Direct Suppression as a Mechanism for Controlling Unpleasant Memories in Daily Life. Journal of Experimental Psychology: General, 143, 1443-1449.
https://doi.org/10.1037/a0036518
[44] Lavric, A., Pizzagalli, D. A., & Forstmeier, S. (2004). When “Go” and “Nogo” Are Equally Frequent: ERP Components and Cortical Tomography. European Journal of Neuroscience, 20, 2483-2488.
https://doi.org/10.1111/j.1460-9568.2004.03683.x
[45] Lei, X., Ostwald, D., Hu, J., Qiu, C., Porcaro, C., Bagshaw, A. P., & Yao, D. (2011). Multimodal Functional Network Connectivity: An EEG-fMRI Fusion in Network Space. PLoS ONE, 6, e24642.
https://doi.org/10.1371/journal.pone.0024642
[46] Luck, M., McBurney, P., Shehory, O., & Willmott, S. (2005). Agent Technology: Computing as Interaction (a Roadmap for Agent Based Computing).
[47] Mecklinger, A., Parra, M., & Waldhauser, G. T. (2009). ERP Correlates of Intentional Forgetting. Brain Research, 1255, 132-147.
https://doi.org/10.1016/j.brainres.2008.11.073
[48] Nieuwenhuis, S., Yeung, N., Van Den Wildenberg, W., & Ridderinkhof, K. R. (2003). Electrophysiological Correlates of Anterior Cingulate Function in a Go/No-Go Task: Effects of Response Conflict and Trial Type Frequency. Cognitive, Affective, & Behavioral Neuroscience, 3, 17-26.
https://doi.org/10.3758/CABN.3.1.17
[49] Nørby, S., Lange, M., & Larsen, A. (2010). Forgetting to Forget: On the Duration of Voluntary Suppression of Neutral and Emotional Memories. Acta Psychologica, 133, 73-80.
https://doi.org/10.1016/j.actpsy.2009.10.002
[50] Norman, K. A., Newman, E. L., & Detre, G. (2007). A Neural Network Model of Retrieval-Induced Forgetting. Psychological Review, 114, 887.
https://doi.org/10.1037/0033-295X.114.4.887
[51] Nowicka, A., Jednorog, K., Wypych, M., & Marchewka, A. (2009). Reversed Old/New Effect for Intentionally Forgotten Words: An ERP Study of Directed Forgetting. International Journal of Psychophysiology, 71, 97-102.
https://doi.org/10.1016/j.ijpsycho.2008.06.009
[52] Nunez, P. L., & Srinivasan, R. (2006). Electric Fields of the Brain: The Neurophysics of EEG. Oxford: Oxford University Press.
https://doi.org/10.1093/acprof:oso/9780195050387.001.0001
[53] Nyhus, E., & Curran, T. (2010). Functional Role of Gamma and Theta Oscillations in Episodic Memory. Neuroscience & Biobehavioral Reviews, 34, 1023-1035.
https://doi.org/10.1016/j.neubiorev.2009.12.014
[54] Osipova, D., Hermes, D., & Jensen, O. (2008). Gamma Power Is Phase-Locked to Posterior Alpha Activity. PLoS ONE, 3, e3990.
https://doi.org/10.1371/journal.pone.0003990
[55] Osipova, D., Takashima, A., Oostenveld, R., Fernández, G., Maris, E., & Jensen, O. (2006). Theta and Gamma Oscillations Predict Encoding and Retrieval of Declarative Memory. The Journal of Neuroscience, 26, 7523-7531.
https://doi.org/10.1523/JNEUROSCI.1948-06.2006
[56] Paz-Caballero, M. D., & Menor, J. (1999). ERP Correlates of Directed Forgetting Effects in Direct and Indirect Memory Tests. European Journal of Cognitive Psychology, 11, 239-260.
https://doi.org/10.1080/713752308
[57] Scheeringa, R., Fries, P., Petersson, K.-M., Oostenveld, R., Grothe, I., Norris, D. G., Bastiaansen, M. C. et al. (2011). Neuronal Dynamics Underlying High- and Low-Frequency EEG Oscillations Contribute Independently to the Human BOLD Signal. Neuron, 69, 572-583.
https://doi.org/10.1016/j.neuron.2010.11.044
[58] Schmajuk, M., Liotti, M., Busse, L., & Woldorff, M. G. (2006). Electrophysiological Activity Underlying Inhibitory Control Processes in Normal Adults. Neuropsychologia, 44, 384-395.
https://doi.org/10.1016/j.neuropsychologia.2005.06.005
[59] Sederberg, P. B., Kahana, M. J., Howard, M. W., Donner, E. J., & Madsen, J. R. (2003). Theta and Gamma Oscillations during Encoding Predict Subsequent Recall. The Journal of Neuroscience, 23, 10809-10814.
[60] Sederberg, P. B., Schulze-Bonhage, A., Madsen, J. R., Bromfield, E. B., McCarthy, D. C., Brandt, A., Kahana, M. J. et al. (2007). Hippocampal and Neocortical Gamma Oscillations Predict Memory Formation in Humans. Cerebral Cortex, 17, 1190-1196.
https://doi.org/10.1093/cercor/bhl030
[61] Spitzer, B., & Bäuml, K.-H. (2009). Retrieval-Induced Forgetting in a Category Recognition Task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 286.
https://doi.org/10.1037/a0014363
[62] Squire, L. R., & Zola, S. M. (1996). Structure and Function of Declarative and Nondeclarative Memory Systems. Proceedings of the National Academy of Sciences, 93, 13515-13522.
https://doi.org/10.1073/pnas.93.24.13515
[63] Staudigl, T., Hanslmayr, S., & Bäuml, K.-H. T. (2010). Theta Oscillations Reflect the Dynamics of Interference in Episodic Memory Retrieval. The Journal of Neuroscience, 30, 11356-11362.
https://doi.org/10.1523/JNEUROSCI.0637-10.2010
[64] Swainson, R., Cunnington, R., Jackson, G. M., Rorden, C., Peters, A. M., Morris, P. G., & Jackson, S. R. (2003). Cognitive Control Mechanisms Revealed by ERP and fMRI: Evidence from Repeated Task-Switching. Journal of Cognitive Neuroscience, 15, 785-799.
https://doi.org/10.1162/089892903322370717
[65] Ullsperger, M., Mecklinger, A., & Müller, U. (2000). An Electrophysiological Test of Directed Forgetting: The Role of Retrieval Inhibition. Journal of Cognitive Neuroscience, 12, 924-940.
https://doi.org/10.1162/08989290051137477
[66] Van Hooff, J. C., Whitaker, T. A., & Ford, R. M. (2009). Directed Forgetting in Direct and Indirect Tests of Memory: Seeking Evidence of Retrieval Inhibition Using Electrophysiological Measures. Brain Cognition, 71, 153-164.
https://doi.org/10.1016/j.bandc.2009.05.001
[67] Waldhauser, G. T., Bäuml, K.-H. T., & Hanslmayr, S. (2014). Brain Oscillations Mediate Successful Suppression of Unwanted Memories. Cerebral Cortex, 25, 4180-4190.
[68] Waldhauser, G. T., Lindgren, M., & Johansson, M. (2012). Intentional Suppression Can Lead to a Reduction of Memory Strength: Behavioral and Electrophysiological Findings. Frontiers in Psychology, 3, 401.
https://doi.org/10.3389/fpsyg.2012.00401
[69] Yang, W., Liu, P., Xiao, X., Li, X., Zeng, C., Qiu, J., & Zhang, Q. (2012). Different Neural Substrates Underlying Directed Forgetting for Negative and Neutral Images: An Event-Related Potential Study. Brain Research, 1441, 53-63.
https://doi.org/10.1016/j.brainres.2011.10.042