循环动载作用下无砟轨道混凝土裂缝内动水压力研究
Research on Internal Dynamic Water Pressure in Concrete Crack of Ballastless Track under Cyclic Dynamic Load
DOI: 10.12677/HJCE.2017.62018, PDF, HTML, XML, 下载: 1,698  浏览: 4,343  国家自然科学基金支持
作者: 徐桂弘*:贵州理工学院土木工程学院,贵州 贵阳
关键词: 无砟轨道混凝土裂缝动水压力循环动载Ballastless Track Concrete Crack Dynamic Water Pressure Cyclic Dynamic Load
摘要: 无砟轨道是我国高速铁路主要结构形式,根据现场病害调查,底座板与CA砂浆粘结层的裂缝较为普遍,多雨地区其伤损更为严重,出现翻浆冒泥现象。在循环动载作用下,假定裂缝形状为楔形,裂缝边缘张开闭合速度呈正弦规律变化,推导出裂缝在动力荷载作用下因水压缩产生的缝内水压计算式。通过试验验证,分析了裂缝边缘张开闭合速度(加载速度)、裂缝初始张开宽度(荷载大小)对缝内最大附加水压的影响规律。研究表明,加载频率是影响裂纹内部水压力的重要因素。当加载幅值不变时,随着加载频率的增加,裂纹内水压力增大。当加载频率不变时,荷载幅值对裂纹内部水压力有重要的影响。当加载频率不变时,裂纹内部某一点的压力,随着荷载幅值的增加而增大,二者可拟合为一个多项式关系。
Abstract: The ballastless track is the main structure of the high-speed railway in China. According to the disease survey, cracks of base plate and the CA mortar bonding layer are widespread, and its damage in pluvial region is more serious, with the mud pumping in phenomenon. Under cyclic dynamic load, with the assumption that the crack is wedge-shape and that the velocity of crack edge accords with sine rule, a calculation formula is derived to calculate the internal water pres-sure in cracks under dynamic load due to compression of seam water. The effect of crack edge’s velocity (loading velocity), and crack edge’s initial width (load size) on the additional water pressure and stress intensity factor is analyzed by test. The study shows that load frequency is an important factor to influence water pressure inside the crack. When loading at constant amplitude, with the increase of loading frequency, the internal pressure will increase. When loading at constant frequency, load amplitude has important effect on crack internal water pressure. When loading at constant frequency, crack within a point of stress will increase with the increase of load amplitude, and the two can be fitting for a polynomial.
文章引用:徐桂弘. 循环动载作用下无砟轨道混凝土裂缝内动水压力研究[J]. 土木工程, 2017, 6(2): 168-178. https://doi.org/10.12677/HJCE.2017.62018

参考文献

[1] 徐庆元, 张旭久. 高速铁路博格纵连板桥上无砟轨道纵向力学特性[J]. 中南大学学报(自然科学版), 2009, 40(2): 526-532.
[2] 卿启湘, 胡萍, 王永和, 尹汉锋, 张春顺. 高速铁路双块式无砟轨道计算模型约束方程的建立[J]. 中南大学学报(自然科学版), 2010, 41(4): 1360-1368.
[3] Van Wijk, A.J., Larralde, J., Lvellc, W., et al. (1989) Pumping Prediction Model for Highway Concrete Pavement. Journal of Transportation Engineering, 115, 161-175.
[4] Hansen, E.C. and Jhannesenr, A.J.M. (1991) Field Effects of Water Pumping Beneath Concrete Pavement Slabs. Journal of Transportation Engineering, 117, 679-696.
[5] Rossi, P. (1989) Coupling between the Crack Propagation Velocity and the Vapour Diffusion in Concrete. Material and Structure, 22, 91-97.
https://doi.org/10.1007/BF02472279
[6] Rossi, P. (1991) Influence of Cracking in Presence of Free Water on the Mechanical Behaviour of Concrete. Magazine of Concrete Research, 43, 53-57.
https://doi.org/10.1680/macr.1991.43.154.53
[7] Rossi, P. and Boulay, C. (1990) Influence of Free Water in Concrete on the Cracking Process. Magazine of Concrete Research, 42, 143-146.
https://doi.org/10.1680/macr.1990.42.152.143
[8] Brühwiler, E. and Saouma, V.C. (1995) Water Fracture Interaction in Concrete—Part I: Fracture Properties. ACI Materials Journal, 92, 296-303.
[9] Brühwiler, E. and Saouma, V.C. (1995) Water Fracture Interaction in Concrete—Part II: Hydrostatic Pressure in Cracks. ACI Materials Journal, 92, 383-390.
[10] Shinmura, A. and Saouma, V. (1997) Fluid Fracture Interaction in Pressurized Reinforced Concrete Vessels. Materials and Structures, 30, 72-80.
https://doi.org/10.1007/BF02486307
[11] Slowik, V. and Saouma, V.E. (2000) Water Pressure in Propagating Concrete Cracks. Journal of Structural Engineering, 126, 235-242.
https://doi.org/10.1061/(ASCE)0733-9445(2000)126:2(235)
[12] Bary, B., Bournazel, J.-P. and Bourdarot, E. (2000) Poro-Damage Approach Applied to Hydro-Fracture Analysis of Concrete. Journal of Engineering Mechanics, 126, 937-943.
https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(937)
[13] 谈至明, 谭福平. 水泥混凝土路面板底脱空区水运动规律的分析模型[J]. 水动力学研究与进展, 2008, 23(3): 281- 286.
[14] 李少波, 张宏超, 孙立军. 动水压力的形成与模拟测量[J]. 同济大学学报(自然科学版), 2007, 35(7): 915-918.
[15] 王海龙, 李庆斌. 湿态混凝土抗压强度与本构关系的细观力学分析[J]. 岩石力学与工程学报, 2006, 25(8): 1531- 1536.
[16] 关增智. 半刚性基层材料抗冲刷性能的研究[J]. 混凝土, 2008(03): 48-50.
[17] 沙爱民. 半刚性基层的材料特性[J]. 中国公路学报, 2008, 21(1): 1-5.
[18] 郑志芳, 李宗利, 孙丽丽, 等. 动力荷载作用下裂缝水力劈裂效应研究[J]. 水利水运工程学报, 2010(2): 45-49.
[19] 吕宏兴, 裴国霞, 杨玲霞. 水力学[M]. 北京: 中国农业出版社, 2002: 6-7.