算子分裂有限元方法求解二维Burgers方程
The Operator Splitting Finite Element Method for Two-Dimensional Burgers Equation
DOI: 10.12677/AAM.2017.62020, PDF, HTML, XML, 下载: 2,081  浏览: 2,769 
作者: 魏云云:广东理工学院基础部,广东 肇庆;长安大学理学院,陕西 西安;史峰:西安交通大学数学与统计学院,陕西 西安;张引娣:长安大学理学院,陕西 西安;西安交通大学数学与统计学院,陕西 西安
关键词: 算子分裂法Burgers方程有限元法多步法Operator Splitting Method Burgers Equation Finite Elements Multistep Scheme
摘要: 本文提出了一种求解Burgers方程新的算子分裂有限元方法。该算法采用算子分裂法将Burgers方程分解成纯对流部分和扩散部分:对流方程时间离散采取中心差分格式,空间的离散采用标准的Galerkin有限元法;扩散子方程的时间离散采取向后差分格式,空间的离散仍采用标准的Galerkin有限元法。该方法特点是对流部分特殊的显式处理,对其使用多步法技术从根本上扩大稳定性区域,而且多步格式在选择适当步数的条件下可以呈现出无条件稳定。通过数值实验验证了该算法单步和多步格式的稳定性和收敛性,并对其进行了误差估计。
Abstract: This paper proposes a new operator splitting finite element method for two-dimensional Burgers equation. The new method is used to decompose the Burgers equation into pure convection and diffusion part: the time discretization of the convection equation solved by the central difference scheme, and the space discretization by the standard Galerkin finite element method; the time discretization of the diffusion equation solved by the backward difference scheme, and the space discretization still using the standard Galerkin finite element method. The characteristic of this method is that the convection part is specially processed, using multi-step technology to expand the stability of the region and selecting the appropriate number of steps, the multi-step scheme can present unconditionally stable. The stability and convergence of the algorithm are verified by numerical experiments.
文章引用:魏云云, 史峰, 张引娣. 算子分裂有限元方法求解二维Burgers方程[J]. 应用数学进展, 2017, 6(2): 174-182. https://doi.org/10.12677/AAM.2017.62020

参考文献

[1] 章本照, 印建安, 张宏基. 流体力学数值方法[M]. 北京: 机械工业出版社, 2003.
[2] 李荣华, 刘播. 偏微分方程数值解法[M]. 北京: 高等教育出版社, 2009.
[3] Quarteroni, A. and Valli, A. (1997) Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin, 1997.
[4] Donea, J. and Huerta, A. (2003) Finite Element Methods for Flow Problems. Wiley, New York.
https://doi.org/10.1002/0470013826
[5] Liao, W.Y. (2010) A Fourth Order Finite-Difference Method for Solving the System of Two-Dimensional Burgers’ Equation. International Journal for Numerical Methods in Fluids, 64, 565-590.
https://doi.org/10.1002/fld.2163
[6] Brooks, A.N. and Hughes, T.J.R. (1982) Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations. Computer Methods in Applied Mechanics and Engineering, 32, 199-259.
https://doi.org/10.1016/0045-7825(82)90071-8
[7] Donea, J.A. (1984) Taylor-Galerkin Method for Convective Transport Problems. International Journal for Numerical Methods in Engineering, 20, 101-119.
https://doi.org/10.1002/nme.1620200108
[8] Nithiarasu, P., Zienkiewicz, O.C. and Codina, R. (2006) The Characteristic-Based Split (CBS) Scheme—A Unified Approach to Fluid Dynamics. International Journal for Numerical Methods in Engineering, 66, 1514-1546.
https://doi.org/10.1002/nme.1698
[9] Khan, L.A. and Liu, L.F. (1989) Numerical Analysis of Operator-Splitting Algorithms for the Two-Dimensional Advection-Diffusion Equation. Computer & Fluids, 9, 235-244.
[10] Karlsen, K.H. and Risbro, N.H. (1997) An Operator Splitting Method for Nonlinear Convection-Diffusion Equations. Numerische Mathematik, 77, 365-382.
https://doi.org/10.1007/s002110050291
[11] Cui, M. (2001) Operator-Splitting Galerkin Method for One Kind of Oin Reaction Model for the Pollution in Groundwater. Applied Mathematics—A Journal of Chinese Universities, Series B, 16, 297-303.
https://doi.org/10.1007/s11766-001-0069-0
[12] 曹志先, 魏良琰. 用算子分裂法解Burgers方程[J]. 武汉水利水电学院学报, 1991, 24 (2): 193-201.
[13] Shi, F., Liang, G., Zhao, Y. and Zou. J. (2014) New Splitting Methods for Convection-Dominated Diffusion Problems and Navier-Stokes Equations. Communications in Computational Physics, 16, 1239-1262.
https://doi.org/10.4208/cicp.031013.030614a