基于最速下降法的室内定位技术研究
Research on Steepest Descent Method Based Indoor Location Estimation Technology
DOI: 10.12677/OE.2017.71005, PDF, HTML, XML, 下载: 1,810  浏览: 4,048 
作者: 黄海波*:南京邮电大学通达学院,江苏 扬州;周蓉, 王文锐, 宋伟, 田龙斌:南京邮电大学,江苏 南京
关键词: RSSI室内定位对数正态阴影衰落模型三边定位算法最速下降法RSSI Indoor Positioning Log-Normal Shadow Fading Modal Trilateral Localization Algorithm Steepest Descent Method
摘要: 室内定位技术解决了卫星信号到达地面时较弱,不能穿透建筑物的问题。传统的室内定位技术由于RSSI受限于多径效应和时间波动性,定位时有很大的不稳定性。针对WSN室内定位的关键性问题的研究,本文提出了一种基于RSSI的WSN的最速下降的定位算法。该方法通过三个接入点即参考节点来求出待测节点的坐标,结合了对数正态阴影衰落模型、三边定位算法以及最速下降法。本文先采用对数正态阴影衰落模型得出待测节点相对于各个参考节点的距离值;然后用三边定位算法求出定位节点的估计坐标;最后用最优化方法对估计的坐标值进行优化。仿真结果表明,相对于基于RSSI的传统定位方法,基于最速下降法的室内定位技术具有更高的定位精度。
Abstract: Indoor positioning technology solves the problems that the satellite signal is weak when it reaches the ground and the signal cannot penetrate the structure. Due to the RSSI being limited by multipath effect and the volatility of time, the traditional indoor positioning technology is unstable when positioning. Aiming at the key issues of research in indoor positioning of WSN, a method based on RSSI positioning of the steepest descent algorithm WSN is proposed in the paper. The method uses three access points, namely the reference node, to find the coordinates of the nodes. In addition, the method combines log-normal shadow fading model, trilateral localization algorithm and steepest descent method. Firstly, using the log-normal shadow fading model the value of RSSI has been gotten from the node under test to the reference signal; besides, the trilateral localization algorithm is used to estimate the locating node coordinates; finally, the estimated coordinates are optimized by the optimization method. The simulation results show that, compared with the traditional positioning method based on RSSI, the indoor positioning technology based on the steepest descent method has better positioning accuracy.
文章引用:黄海波, 周蓉, 王文锐, 宋伟, 田龙斌. 基于最速下降法的室内定位技术研究[J]. 光电子, 2017, 7(1): 28-33. https://doi.org/10.12677/OE.2017.71005

参考文献

[1] Kwak, J., Kim, J. and Chong, S. (2013) Energy-Optimal Collaborative GPS Localization with Short Range Communication. 2013 11th International Symposium and Workshops on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), Tsukuba Science City, 256-263.
[2] 生丽. 基于GPS的室内无线定位系统研究[D]: [硕士学位论文]. 上海: 华东师范大学, 2012.
[3] Hauschildt, D. and Kirchhof, N. (2011) Improving Indoor Position Estimation by Combining Active TDOA Ultrasound and Passive Thermal Infrared Localization. 2011 8th Workshop on Positioning, Navigation and Communication, Dresden, 7-8 April 2011, 94-99.
https://doi.org/10.1109/WPNC.2011.5961022
[4] Li, R., Du, Z., Zhao, Y. and Liu, S. (2016) Design and Implementation of Mobile Robot Ultrasonic Localization System. 2016 Chinese Control and Decision Conference (CCDC), Yinchuan, 28-30 May 2016, 5347-5352.
https://doi.org/10.1109/CCDC.2016.7531954
[5] Chen, L., et al. (2015) Constraint Kalman Filter for Indoor Bluetooth Localization. 2015 23rd European Signal Processing Conference (EUSIPCO), Nice, France, 31 August-4 September 2015, 1915-1919.
https://doi.org/10.1109/EUSIPCO.2015.7362717
[6] Fan, H. and Chen, Z. (2016) WiFi Based Indoor Localization with Multiple Kernel Learning. 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN), Beijing, 6 January 2016, 474-477.
https://doi.org/10.1109/ICCSN.2016.7587204
[7] Cap, M., Drexler, P. and Kaska, M. (2016) Comparison of Methods for Detecting the Signal Arrival Time in TDOA Localization Method. 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, 8-11 August 2016, 1813-1816.
https://doi.org/10.1109/PIERS.2016.7734801
[8] 韩霜, 罗海勇, 陈颖, 丁玉珍. 基于TDOA的超声波室内定位系统的设计与实现[J]. 传感技术学报, 2010, 23(3): 347-353.
[9] Abu-Shaban, Z., Zhou, X. and Abhayapala, T.D. (2016) A Novel TOA-Based Mobile Localization Technique under Mixed LOS/NLOS Conditions for Cellular Networks. IEEE Transactions on Vehicular Technology, 65, 8841-8853.
https://doi.org/10.1109/TVT.2016.2517151
[10] 栾凤刚, 王平, 胡建军. 一种基于加权的TOA地下空间UWB室内定位算法[J]. 工业控制计算机, 2014, 27(1): 73-75+78.
[11] Wang, Y. and Ho, K.C. (2015) An Asymptotically Efficient Estimator in Closed-Form for 3-D AOA Localization Using a Sensor Network. IEEE Transactions on Wireless Communications, 14, 6524-6535.
https://doi.org/10.1109/TWC.2015.2456057
[12] Mahapatra, R.K. and Shet, N.S.V. (2016) Experimental Analysis of RSSI-Based Distance Estimation for Wireless Sensor Networks. 2016 IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), Mangalore, 211-215.
https://doi.org/10.1109/DISCOVER.2016.7806221
[13] 王琦. 基于RSSI测距的室内定位技术[J]. 电子科技, 2012, 25(6): 64-66+78.
[14] Sagong, M. and Cheun, K. (2012) A Statistical Inter-Cell Interference Model for Uplink Cellular OFDMA Networks under Log-Normal Shadowing and Rayleigh Fading. IEEE Communications Letters, 16, 824-827.
https://doi.org/10.1109/LCOMM.2012.040912.112469
[15] 刘明辉, 李利民. 阴影衰落对无线传感器测距的误差影响分析[J]. 中国新通信, 2016, 18(12): 133-135.
[16] 高雷, 郑相全, 高鸿. 无线传感器网络中一种基于三边测量法和质心算法的节点定位算法[J]. 重庆工学院学报(自然科学), 2009, 23(7): 138-141.
[17] 刘玉宏, 于彬. 一种RSSI室内三边定位方案的设计与实现[J]. 计算机与现代化, 2011(10): 27-30.