玛咖超临界提取物中的抗衰老活性物质
Anti-Aging Substances from Maca Supercritical Extract
DOI: 10.12677/JOCR.2017.51007, PDF, HTML, XML, 下载: 1,658  浏览: 4,050  国家自然科学基金支持
作者: 程丽红, 林燕飞, 王艳惠, 向 兰, 戚建华:浙江大学药学院,浙江 杭州;朴金株, 金泰硕, 吕翼炫:韩国圃美多技术院,韩国 首尔
关键词: 玛咖抗衰老玛咖酰胺K6001酵母Maca Anti-Aging Macamides Yeast K6001 Strain
摘要: 本研究采用酵母突变株K6001作为生物活性筛选系统,对韩国圃美多公司多个产品进行筛选,发现玛咖超临界提取粉末具有较好的抗衰老活性。因此对该原料中的抗衰老活性物质进行了研究并从中分离得到了两个活性化合物(1, 2)。这两个化合物都能显著延长酵母突变株的复制性寿命。通过波谱分析以及文献数据比对,推测活性化合物1的结构为n-benzyl-(9Z)-octadecenamide(1),确定活性化合物2的结构为n-benzylmyristamide(2)。为了进一步确认化合物1的结构,合成了n-benzyl-(9Z)-octadecena- mide(1),并且测定了其生物活性,结果表明合成得到的n-benzyl-(9Z)-octadecenamide的波谱数据及生物活性与天然来源的化合物1相同。
Abstract: Extracts of several products of Pulmuone were screened for their anti-aging activity using the K6001 yeast strain bioassay system. Maca supercritical extract significantly exhibited anti-aging activity and two active compounds were isolated from the extract. The structures were elucidated by the spectroscopic data and comparison with those reported. One structure was proposed to be n-benzyl-(9Z)-octadecenamide (1), and another was identified as n-benzylmyristamide (2). Both compounds significantly extended the replicative lifespan of K6001 yeast strain. To confirm the structure of compound 1, n-benzyl-(9Z)-octadecenamide (1) was synthesized and biological activity was evaluated. The synthesized n-benzyl-(9Z)-octadecenamide (1) is identical to natural compound 1 from spectroscopic data and biological activity.
文章引用:程丽红, 林燕飞, 王艳惠, 朴金株, 金泰硕, 向兰, 吕翼炫, 戚建华. 玛咖超临界提取物中的抗衰老活性物质[J]. 有机化学研究, 2017, 5(1): 45-50. https://doi.org/10.12677/JOCR.2017.51007

参考文献

[1] Sander, M., Oxlund, B., Jespersen, A., Krasnik, A., Mortensen, E.L., Westendorp, R.G.J. and Rasmussen, L.J. (2015) The Challenges of Human Population Ageing. Age and Ageing, 44, 185-187.
https://doi.org/10.1093/ageing/afu189
[2] World Health Organization (2015) China Country Assessment Report on Ageing and Health. World Health Organization.
[3] Costa, J.P., Vitorino, R., Silva, G.M., Vogel, C., Duarte, A.C. and Rocha-Santos, T. (2016) A Synopsis on Aging- Theories, Mechanisms and Future Prospects. Ageing Research Reviews, 29, 90-112.
[4] Haigis, M.C. and Guarente, L.P. (2006) Mammalian Sirtuins-Emerging Roles in Physiology, Aging, and Calorie Restriction. Genes and Development, 20, 2913-2921.
https://doi.org/10.1101/gad.1467506
[5] Bobola, N., Jansen, R.P., Shin, T.H. and Nasmyth, K. (1996) Asym-metric Accumulation of Ash1p in Postanaphase Nuclei Depends on a Myosin and Restricts Yeast Mating-Type Switching to Mother Cells. Cell, 84, 699-709.
[6] Jarolim, S., Millen, J., Heeren, G., Laun, P., Goldfarb, D.S. and Breitenbach, M. (2004) A Novel Assay for Replicative Lifespan in Saccharomyces cerevisiae. FEMS Yeast Research, 5, 169-177.
[7] Lin, Y.F., Sun, Y.J., Weng, Y.F., Matsuura, A., Xiang, L. and Qi, J.H. (2016) Parishin from Gastrodia elata Extends the Lifespan of Yeast via Regulation of Sir2/Uth1/TOR Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2016, Article ID: 4074690.
https://doi.org/10.1155/2016/4074690
[8] Sun, Y.J., Lin, Y.F., Cao, X.L., Xiang, L. and Qi, J.H. (2014) Sterols from Mytilidae Show Anti-Aging and Neuroprotective Effects via An-ti-Oxidative Activity. International Journal of Molecular Sciences, 15, 21660-21673.
https://doi.org/10.3390/ijms151221660
[9] Sun, K.Y., Cao, X.L., Pei, L., Matsuura, A., Xiang, L. and Qi, J.H. (2013) A Steroidal Saponin from Ophiopogon japonicus Extends the Lifespan of Yeast via the Pathway Involved in SOD and UTH1. International Journal of Molecular Sciences, 14, 4461-4475.
https://doi.org/10.3390/ijms14034461
[10] Weng, Y.F., Lu J., Xiang, L., Matsuura, A., Zhang, Y., Huang, Q.M. and Qi, J.H. (2011) Ganodermasides C and D, Two New Anti-Aging Ergosterols from Spores of the Medicinal Mush-room Ganoderma lucidum. Bioscience Biotechnology and Biochemistry, 75, 800-803.
https://doi.org/10.1271/bbb.100918
[11] Weng, Y.F., Xiang, L., Matsuura, A., Zhang, Y., Huang, Q.M. and Qi, J.H. (2010) Ganodermasides A and B, Two novel Anti-Aging Ergosterols from Spores of a Medicinal Mushroom Ganoderma lucidum on Yeast via UTH1 Gene. Bioorganic & Medicinal Chemistry, 18, 999-1002.
[12] Choi, E.H., Kang, J.I., Cho, J.Y., Lee, S.H., Kim, T.S., Yeo, I.H. and Chun, H.S. (2012) Supplementation of Standardized Li-pid-Soluble Extract from Maca (Lepidium meyenii) Increases Swimming Endurance Capacity in Rats. Journal of Func-tional Foods, 4, 568-573.
[13] Lee, K.J., Dabrowski, K., Rinchard, J., Gomez, C., Guz, L. and Vilchez, C. (2004) Supplementation of Maca (Lepidium meyenii) Tuber Meal in Diets Improves Growth Rate and Survival of Rainbow Trout Oncorhynchus mykiss (Walbaum) Alevins and Juveniles. Aquaculture Research, 35, 215-223.
https://doi.org/10.1111/j.1365-2109.2004.01022.x
[14] Mccollom, M.M., Villinski, J.R., Mcphail, K.L., Craker, L.E. and Gafner, S. (2005) Analysis of Macamides in Samples of Maca (Lepidium meyenii) by HPLC-UV-MS/MS. Phytochemical Analysis, 16, 463-469.
https://doi.org/10.1002/pca.871
[15] Wu, H., Kelley, C.J., Pino-figueroa, A., Vu, H.D. and Maher, T.J. (2013) Macamides and Their Synthetic Analogs: Evaluation of in Vitro FAAH Inhibition. Bioorganic & Medicinal Chemistry, 21, 5188-5197.