TRMM卫星降水数据在淮河息县流域径流模拟的适用性
Hydrological Simulation Capability of TRMM Satellite Precipitation Data in Xixian Catchment, Huai River Basin
DOI: 10.12677/JWRR.2017.62018, PDF, HTML, XML,  被引量 下载: 1,683  浏览: 2,646  国家自然科学基金支持
作者: 张鹏举, 陈宏新, 赵 敏, 李敏娟:河海大学,水文水资源学院,江苏 南京;江善虎:河海大学,水文水资源学院,江苏 南京;河海大学,水文水资源与水利工程科学国家重点实验室,江苏 南京
关键词: TRMM卫星降水精度评估径流模拟新安江模型TRMM Satellite Precipitation Precision Evaluation Hydrological Simulation Xinanjiang Model
摘要: 卫星遥感降水由于高时空分辨率优势为现代水文模拟预报提供了有力的数据支持。结合地面观测数据,在中纬度淮河息县流域定量评估TRMM卫星降水(3B42RT和3B42V7)的精度,并采用栅格新安江模型进行卫星数据的径流模拟适用性分析。结果表明:3B42RT与3B42V7存在系统偏差,分别高估流域降水量25.25%与14.88%,ABIAS分别达到70.57%和67.61%,但二者与地面站点数据相关性较好,CC值达到了0.75以上;月尺度上精度有明显提高,ABIAS大幅度下降,CC值有较大提高,3B42V7的CC值为0.97。径流模拟方面,对卫星数据设计两种不同模拟情景,情景I利用雨量站点观测数据率定模型参数,情景II利用卫星降水数据重新率定模型参数,3B42RT在情景II下模拟结果较情景I下精度有所提高,但仍不及3B42V7模拟结果;3B42V7在情景I、II下都有较好的径流模拟表现,NSCE达到0.62以上,BIAS在±10.48%之间,CC达到0.79以上,表明TRMM卫星降水具有较好的径流模拟适用性。本研究可为TRMM和GPM卫星降水数据的水文应用提供参考借鉴。
Abstract: Satellite precipitation products with high temporal-spatial resolution provide strong data support for modern hydrological simulation and forecast. Combining with the ground observation data, this study aims to evaluate the accuracy and hydrological simulation capability of the latest Tropical Rainfall Measuring Mission (TRMM) satellite precipitation product (TRMM 3B42RT and 3B42V7) in mid-latitude Xixian catchment, Huai River basin. The Gridded Xinanjiang model was used for streamflow simulation. The results show that, TRMM satellite precipitation has different extent overestimation of the benchmark precipitation, with BIAS of 25.25% for 3B42RT and 14.88% for 3B42V7; in the absolute error sense, TRMM satellite precipitation has large values; for the correlation sense, TRMM satellite precipitation has good values more than 0.75. At the monthly time scale, the precision of the TRMM satellite precipitation has greatly been improved in terms of declined ABIAS values and increased CC values. With the model parameters first benchmarked by the rain gauge data, the behavior of the streamflow simulation from TRMM 3B42RT is poor, but it still could characterize the diurnal variation of the streamflow. When the model parameters were recalibrated by each individual satellite data, the performance of TRMM 3B42RT was significantly improved. Compared with the TRMM 3B42RT, the TRMM 3B42V7 has good streamflow simulations in both parameter calibration scenes, with NSCE values more than 0.62, BIAS values between ±10.48% and CC values more than 0.79, which demonstrated good hydrological simulation utility of the TRMM data. The present work will hopefully be a reference for future hydrological utilizations of TRMM and GPM (Global Precipitation Measurement) satellite precipitation products.
文章引用:张鹏举, 江善虎, 陈宏新, 赵敏, 李敏娟. TRMM卫星降水数据在淮河息县流域径流模拟的适用性[J]. 水资源研究, 2017, 6(2): 148-155. https://doi.org/10.12677/JWRR.2017.62018

参考文献

[1] 刘元波, 傅巧妮, 宋平, 等. 卫星遥感反演降水研究综述[J]. 地球科学进展, 2007(26): 1162-1172. LIU Yuanbo, FU Qiaoni, SONG Ping, et al. Satellite retrieval of precipitation: An overview. Advances in Earth Science, 2007(26): 1162-1172. (in Chinese)
[2] KIDD, C., HUFFMAN, G. Global precipitation measurement. Meteorological Applications, 2011(18): 334-353.
https://doi.org/10.1002/met.284
[3] JIANG, S. H., REN, L. L., YONG, B., et al. Evaluation of high-resolution satellite precipitation products with surface rain gauge observations from Laohahe Basin in northern China. Water Science and Engineering, 2010, 3(4): 405-417.
[4] JIANG S. H., REN L. L., HONG Y., et al. Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method. Journal of Hydrology, 2012(452-453): 213-225.
https://doi.org/10.1016/j.jhydrol.2012.05.055
[5] 唐国强, 万玮, 曾子悦, 等. 全球降水测量(GPM)计划及其最新进展综述[J]. 遥感技术与应用, 2015, 30(4): 607-615. TANG Guoqiang, WAN Wei, ZENG Ziyue, et al. An overview of the Global Precipitation Measurement (GPM) mission and it’s latest development. Remote Sensing Technologu and Application, 2015, 30(4): 607-615. (in Chinese)
[6] 杨秀芹, 耿文杰. 淮河流域TRMM多源卫星降水产品精度评估[J]. 水电能源科学, 2016, 34(7): 1-5. YANG Xiuqin, GENG Wenjie. Accuracy evaluation of TRMM-based multi-satellite precipitation in Huai River Basin. Water Resources and Power, 2016, 34(7): 1-5. (in Chinese)
[7] 胡庆芳, 杨大文, 王银堂, 等. 赣江流域TRMM 3B42V6的误差特征与成因解释[J]. 水科学进展, 2013, 24(6): 765-800. HU Qingfang, YANG Dawen, WANG Yintang, et al. Validation and error interpretation for daily TRMM 3B42V6 rainfall over the Ganjiang River basin in China. Advances in Water Science, 2013, 24(6): 1-9. (in Chinese)
[8] 李剑锋, 佘文婧, 江善虎, 等. TRMM卫星降水数据在老哈河流域的精度评估[J]. 水资源与水工程学报, 2014, 25(5): 89-92. LI Jianfeng, SHE Wenjing, JIANG Shanhu, et al. Evaluation of accuracy of Laohariver by data of TRMM satellite precipitation. Journal of Water Resources & Water Engineering, 2014, 25(5): 89-92. (in Chinese)
[9] 费明哲, 张增信, 原立峰, 等. TRMM降水产品在鄱阳湖流域的精度评价[J]. 长江流域资源与环境, 2015, 24(8): 1322- 1330. FEI Mingzhe, ZHANG Zengxin, YUAN Lifeng, et al. Accuracy assessment for TRMM in the Poyang Lake Basin. Resources and Environment in the Yangtze Basin, 2015, 24(8): 1322-1330. (in Chinese)
[10] 杨传国, 余钟波, 林朝晖, 等. 基于TRMM卫星雷达降雨的流域陆面水文过程[J]. 水科学进展, 2009, 20(4): 461-466. YANG Chuanguo, YU Zhongbo, LIN Zhaohui, et al. Study on watershed hydrologic processes using TRMM satellite precipitation radar products. Advances in Water Science, 2009, 20(4): 461-466. (in Chinese)
[11] YONG, B., REN, L. L., HONG, Y., et al. Hydrologic evaluation of multisatellite precipitation analysis standard precipitation products in basins beyond its bnclined latitude band: A case study in Laohahe Basin, China. Water Resources Research, 2010(46): W07542.
https://doi.org/10.1029/2009WR008965
[12] 江善虎, 任立良, 雍斌, 等. TRMM卫星降水数据在洣水流域径流模拟中的应用[J]. 水科学进展, 2014, 25(5): 641-649. JIANG Shanhu, REN Liliang, YONG Bin, et al. Hydrological evaluation of the TRMM multi-satellite precipitation estimates over the Mishui basin. Advances in Water Science, 2014, 25(5): 641-649. (in Chinese)
[13] 唐国强, 李哲, 薛显武, 等. 赣江流域TRMM遥感降水对地面站点观测的可替代性[J]. 水科学进展, 2015, 26(3): 340-346. TANG Guoqiang, LI Zhe, XUE Xianwu, et al. A study of substitutability of TRMM remote sensing precipitation for gauge- based observation in Ganjiang River basin. Advances in Water Science, 2015, 26(3): 340-346. (in Chinese)
[14] 王佳伶,陈华, 许崇育, 等. TRMM卫星降水数据的精度及径流模拟评估[J]. 水资源研究, 2016, 5(5): 434-445. WANG Jialiang, CHEN Hua, XU Chongyu, et al. Evaluation of accuracy and streamflow simulation of TRMM satellite precipitation data. Journal of Water Resources Research, 2016, 5(5): 434-445. (in Chinese)
[15] Food and Agriculture Organization of the United Nation. Crop evapotranspiration: Guidelines for computing crop requirements. Italy: Food & Agriculture Org, 1998.
[16] HUFFMAN, G. J., BOLVIN, D. T. Real-time TRMM multi-satellite precipitation analysis data set documentation. 2013. ftp://meso-a.gsfc.nasa.gov/pub/trmmdocs/rt/3B4XRT_doc_V7.pdf
[17] 赵人俊. 流域水文模拟——新安江模型与陕北模型[M]. 北京: 水利电力出版社, 1984. ZHAO Ren-Jun. Watershed hydrological simulation—Xinanjiang Model and Shanbei Model. Beijing: Hydraulic and Electric Press, 1984. (in Chinese)
[18] DUAN, Q., SOROOSHIAN, S. and GUPTA, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 1992, 28(4): 1015-1031.
https://doi.org/10.1029/91WR02985