产乙酸菌合成气发酵的研究进展
Research Progress of Fermentation of Synthetic Gas from Acetogen
DOI: 10.12677/AMB.2017.61001, PDF, HTML, XML, 下载: 2,023  浏览: 4,880  科研立项经费支持
作者: 吴冠勋, 吴玉珊, 孟春晓, 高政权*:山东理工大学生命科学学院,山东 淄博;韩一凡, 李德茂:中国科学院天津工业生物技术研究所,天津
关键词: 可再生清洁能源合成气发酵产乙酸菌Renewable Clean Energy Synthetic Gas Fermentation Acetogen
摘要: 合成气发酵已经成为当今研究热点之一。本文从菌种、代谢途径、发酵条件三个方面对合成气发酵进行了综述,并对今后的发展方向进行了展望。
Abstract: Biological conversion of syngas to produce bulk chemicals make more attractive today. Strains, metabolic pathway, and fermentation technology which involved in syngas fermentation were reviewed. Development aspect was looked forward hereafter.
文章引用:吴冠勋, 吴玉珊, 韩一凡, 李德茂, 孟春晓, 高政权. 产乙酸菌合成气发酵的研究进展[J]. 微生物前沿, 2017, 6(1): 1-9. https://doi.org/10.12677/AMB.2017.61001

参考文献

[1] Campbell, C.J. and Laherrère, J.H. (1998) The End of Cheap Oil. Scientific American, 278, 78-83.
https://doi.org/10.1038/scientificamerican0398-78
[2] Vasudevan, P.T., Gagnon, M.D. and Briggs, M.S. (2010) Environmentally Sustainable Biofuels—The Case for Biodiesel, Biobutanol and Cellulosic Ethanol. Springer, Netherlands, 43-62.
[3] Zhu, X.F. and Tan, X.S. (2009) Metalloproteins/Metalloenzymes for the Synthesis of Acetyl-CoA in the Wood- Ljungdahl Pathway. Science in China Series B: Chemistry, 52, 2071-2082.
https://doi.org/10.1007/s11426-009-0082-3
[4] Budarin, V.L., Shuttleworth, P.S., Dodson, J.R., et al. (2010) Use of Green Chemical Technologies in an Integrated Biorefinery. Energy & Environmental Science, 4, 471-479.
https://doi.org/10.1039/C0EE00184H
[5] Tiradoacevedo, O., Chinn, M.S. and Grunden, A.M. (2010) Production of Biofuels from Synthesis Gas Using Microbial Catalysts. Advances in Applied Microbiology, 70, 57-92.
https://doi.org/10.1016/S0065-2164(10)70002-2
[6] Maschio, G., Lucchesi, A. and Stoppato, G. (1994) Production of Syngas from Biomass. Bioresource Technology, 48, 119-126.
https://doi.org/10.1016/0960-8524(94)90198-8
[7] Munasinghe, P.C. and Khanal, S.K. (2010) Biomass-Derived Syngas Fermentation into Biofuels: Opportunities and Challenges. Bioresource Technology, 101, 5013-5022.
https://doi.org/10.1016/j.biortech.2009.12.098
[8] Klasson, K.T., Ackerson, M.D., Clausen, E.C., et al. (1991) Bioreactor Design for Synthesis Gas Fermentations. Fuel, 70, 605-614.
https://doi.org/10.1016/0016-2361(91)90174-9
[9] Klasson, K.T., Ackerson, M.D., Clausen, E.C., et al. (1992) Bioconversion of Synthesis Gas into Liquid or Gaseous Fuels. Enzyme & Microbial Technology, 14, 602-608.
https://doi.org/10.1016/0141-0229(92)90033-K
[10] Mohammadi, M., Najafpour, G.D., Younesi, H., et al. (2011) Bioconversion of Synthesis Gas to Second Generation Biofuels: A Review. Renewable & Sustainable Energy Reviews, 15, 4255-4273.
https://doi.org/10.1016/j.rser.2011.07.124
[11] Fischer, F., Lieske, R. and Winzer, K. (1932) Biologische gasreaktionen. II. Gber die bildung von essigs ure bei der biologischen umsetzung von kohlenoxyd und kohlens ure mit wasserstoff zu methan. Biochemische Zeitschrift, 245, 2-12.
[12] Wieringa, K.T. (1936) Over het verdwijnen van waterstof en koolzuur onder anaerobe voorwaarden. Antonie van Leeuwenhoek, 3, 263-273.
https://doi.org/10.1007/BF02059556
[13] Wieringa, K.T. (1939) The Formation of Acetic Acid from Carbon Dioxide and Hydrogen by Anaerobic Spore-Form- ing Bacteria. Antonie van Leeuwenhoek, 6, 251-262.
https://doi.org/10.1007/BF02146190
[14] Fontaine, F.E., Peterson, W.H., Mccoy, E., et al. (1942) A New Type of Glucose Fermentation by Clostridium thermoaceticum. Journal of Bacteriology, 43, 701-715.
[15] Drake, H.L., Gößner, A.S. and Daniel, S.L. (2008) Old Acetogens, New Light. Annals of the New York Academy of Sciences, 1125, 100-128.
https://doi.org/10.1196/annals.1419.016
[16] Henstra, A.M., Sipma, J., Rinzema, A., et al. (2007) Microbiology of Synthesis Gas Fermentation for Biofuel Production. Current Opinion in Biotechnology, 18, 200-206.
https://doi.org/10.1016/j.copbio.2007.03.008
[17] Phillips, J.R., Klasson, K.T., Clausen, E.C., et al. (1993) Biological Production of Ethanol from Coal Synthesis Gas. Applied Biochemistry and Biotechnology, 39-40, 559-571.
https://doi.org/10.1007/BF02919018
[18] 黄格省, 李振宇, 张兰波, 等. 生物丁醇的性能优势及技术进展[J]. 石化技术与应用, 2012, 30(3): 52-57.
[19] Fernándeznaveira, Á, Abubackar, H.N., Veiga, M.C., et al. (2016) Efficient Butanol-Ethanol (B-E) Production from Carbon Monoxide Fermentation by Clostridium carboxidivorans. Applied Microbiology and Biotechnology, 100, 3361-3370.
https://doi.org/10.1007/s00253-015-7238-1
[20] Bruant, G., Lévesque, M.J., Peter, C., et al. (2012) Genomic Analysis of Carbon Monoxide Utilization and Butanol Production by Clostridium carboxidivorans Strain P7T. PLoS ONE, 5, e13033.
https://doi.org/10.1371/journal.pone.0013033
[21] Hädicke, O., Grammel, H. and Klamt, S. (2011) Metabolic Network Modeling of Redox Balancing and Biohydrogen Production in Purple Nonsulfur Bacteria. BMC Systems Biology, 5, 150.
https://doi.org/10.1186/1752-0509-5-150
[22] Ammam, F., Tremblay, P.L., Lizak, D.M., et al. (2016) Effect of Tungstate on Acetate and Ethanol Production by the Electrosynthetic Bacterium Sporomusa ovata. Biotechnology for Biofuels, 9, 163.
https://doi.org/10.1186/s13068-016-0576-0
[23] Phillips, J.R., Atiyeh, H.K., Tanner, R.S., et al. (2015) Butanol and Hexanol Production in Clostridium carboxidivorans Syngas Fermentation: Medium Development and Culture Techniques. Bioresource Technology, 190, 114-121.
https://doi.org/10.1016/j.biortech.2015.04.043
[24] Saxena, J. and Tanner, R.S. (2012) Optimization of a Corn Steep Medium for Production of Ethanol from Synthesis Gas Fermentation by Clostridium ragsdalei. World Journal of Microbiology and Biotechnology, 28, 1553-1561.
https://doi.org/10.1007/s11274-011-0959-0
[25] Cotter, J.L., Chinn, M.S. and Grunden, A.M. (2009) Ethanol and Acetate Production by Clostridium ljungdahlii and Clostridium autoethanogenum Using Resting Cells. Bioprocess and Biosystems Engineering, 32, 369-380.
https://doi.org/10.1007/s00449-008-0256-y
[26] Heise, R., Müller, V. and Gottschalk, G. (1989) Sodium Dependence of Acetate Formation by the Acetogenic Bacterium Acetobacterium woodii. Journal of Bacteriology, 171, 5473-5478.
https://doi.org/10.1128/jb.171.10.5473-5478.1989
[27] Köpke, M., Held, C., Hujer, S., et al. (2010) Clostridium ljungdahlii Represents a Microbial Production Platform Based on Syngas. Proceedings of the National Academy of Sciences of the United States of America, 107, 13087-13092.
https://doi.org/10.1073/pnas.1004716107
[28] Ramiópujol, S., Ganigué, R., Bañeras, L., et al. (2015) How Can Alcohol Production Be Improved in Carboxydotrophic Clostridia? Process Biochemistry, 50, 1047-1055.
https://doi.org/10.1016/j.procbio.2015.03.019
[29] Abubackar, H.N., Veiga, M.C. and Kennes, C. (2012) Biological Conversion of Carbon Monoxide to Ethanol: Effect of pH, Gas Pressure, Reducing Agent and Yeast Extract. Bioresource Technology, 114, 518.
https://doi.org/10.1016/j.biortech.2012.03.027
[30] Grethlein, A.J., Worden, R.M., Jain, M.K., et al. (1990) Continuous Production of Mixed Alcohols and Acids from Carbon Monoxide. Applied Biochemistry and Biotechnology, 24-25, 875-884.
https://doi.org/10.1007/BF02920301
[31] Klasson, K.T., Ackerson, M.D., Clausen, E.C., et al. (1993) Biological Conversion of Coal and Coal-Derived Synthesis Gas. Fuel, 72, 1673-1678.
https://doi.org/10.1016/0016-2361(93)90354-5
[32] Ramiópujol, S., Ganigué, R., Bañeras, L., et al. (2014) Impact of Formate on the Growth and Productivity of Clostridium ljungdahlii PETC and Clostridium carboxidivorans P7 Grown on Syngas. International Microbiology, 17, 195-204.
[33] Maddox, I.S., Steiner, E., Hirsch, S., et al. (2000) The Cause of “Acid-Crash” and “Acidogenic Fermentations” during the Batch Acetone-Butanol-Ethanol (ABE-) Fermentation Process. Journal of Molecular Microbiology & Biotechnology, 2, 95.
[34] Richter, H., Martin, M.E. and Angenent, L.T. (2013) A Two-Stage Continuous Fermentation System for Conversion of Syngas into Ethanol. Energies, 6, 3987-4000.
https://doi.org/10.3390/en6083987
[35] Kashket, E.R. and Cao, Z.Y. (1995) Clostridial Strain Degeneration. FEMS Microbiology Reviews, 17, 307-315.
https://doi.org/10.1111/j.1574-6976.1995.tb00214.x
[36] Hurst, K.M. and Lewis, R.S. (2010) Carbon Monoxide Partial Pressure Effects on the Metabolic Process of Syngas Fermentation. Biochemical Engineering Journal, 48, 159-165.
https://doi.org/10.1016/j.bej.2009.09.004
[37] Younesi, H., Najafpour, G. and Mohamed, A.R. (2006) Ethanol and Acetate Production from Synthesis gas Via Fermentation Processes Using Anaerobic Bacterium, Clostridium ljungdahlii. Biochemical Engineering Journal, 27, 110-119.
https://doi.org/10.1016/j.bej.2005.08.015
[38] Shen, Y.W., Brown, R. and Wen, Z.Y. (2014) Enhancing Mass Transfer and Ethanol Production in Syngas Fermentation of Clostridium carboxidivorans P7 through a Monolithic Biofilm Reactor. Applied Energy, 136, 68-76.
https://doi.org/10.1016/j.apenergy.2014.08.117
[39] Drzyzga, O., Revelles, O., Duranterodríguez, G., et al. (2015) New Challenges for Syngas Fermentation: Towards Production of Biopolymers. Journal of Chemical Technology & Biotechnology, 90, 1735-1751.
https://doi.org/10.1002/jctb.4721
[40] Singla, A., Verma, D., Lal, B., et al. (2014) Enrichment and Optimization of Anaerobic Bacterial Mixed Culture for Conversion of Syngas to Ethanol. Bioresource Technology, 172, 41-49.
https://doi.org/10.1016/j.biortech.2014.08.083