新标准下梅雨特征量的时间演变及异常梅年环流特征的分析
The Analysis of Temporal Evolution and Anomalous Circulation Characteristics of Meiyu under the New Standard
DOI: 10.12677/CCRL.2017.62016, PDF, HTML, XML,  被引量 下载: 1,674  浏览: 5,205  国家自然科学基金支持
作者: 罗小杰*:华东师范大学地理科学学院,地理信息科学教育部重点实验室,上海
关键词: 新标准梅雨监测区梅雨特征量异常梅年环流特征New Standard Monitoring Area of Meiyu Meiyu Features Anomalous Years Circulation Characteristics
摘要: 根据中国气象局预报与网络司2014年印发的《梅雨监测业务规定》涉及的梅雨监测区梅雨划分标准、1961~2010年梅雨监测区85个站点逐日降水资料以及美国NCEP/NCAR提供的逐日再分析资料,得出了我国梅雨监测区1961~2010年50年的梅雨期入、出梅日期,以及梅雨期长度、梅雨量、梅雨强度等梅雨特征量。并分析了异常梅年的环流特征,结果如下:1) 总体来看,出梅日和梅雨量、梅雨期长度以及梅雨强度的相关性比入梅日和它们的相关性要好。2) M-K突变检验显示,梅雨监测区入、出梅日、梅雨期长度以及梅雨强度均没有发生突变。3) 在平均早入梅日前后,早入梅年,西太平洋副高较为强大,位置偏西北,副高脊线超过20˚N;晚入梅年,西太平洋副高面积明显减小,位置明显偏东。在平均晚出梅日前后,早出梅年,西太平洋副高位置偏北,西太副高脊线超过30˚N;晚出梅年,西太平洋副高依旧强大,西段副高脊线在30˚N附近。
Abstract: According to the new criterion for Rules of Meiyu Monitor, which published by The Prediction and Network Ministry of China Meteorological Administration in 2014, the daily precipitation data of Meiyu Monitor at 85 stations and daily reanalysis data of NCEP/NCAR during 1961-2010, the onsets, withdrawals, length, rainfall, and intensity of Meiyu were calculated. The results indicate that 1) the relationship between withdrawals and other features of Meiyu is closer than the relationship between onsets of Meiyu and them. 2) The M-K mutation test shows that there was no mutation in onsets, withdrawals, the length and the intensity of Meiyu. 3) Before and after mean earlier onsets, on earlier onsets year of Meiyu, Western Pacific subtropical high is strong, northwest, Western Pacific subtropical high ridge is beyond 20˚N, on late onsets year of Meiyu, Western Pacific subtropical high is weak. Before and after mean late withdrawals, on earlier withdrawals year of Meiyu, Western Pacific subtropical high ridge is beyond 30˚N, on late withdrawals year of Meiyu, Western Pacific subtropical high is strong, the west part of Western Pacific subtropical high ridge is near 30˚N.
文章引用:罗小杰. 新标准下梅雨特征量的时间演变及异常梅年环流特征的分析[J]. 气候变化研究快报, 2017, 6(2): 130-153. https://doi.org/10.12677/CCRL.2017.62016

参考文献

[1] IPCC (2013) Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis Final Draft Underlying Scientific-Technical Assessment.
[2] 王冀, 江志红, 严明良, 等. 1960-2005年长江中下游极端降水指数变化特征分析[J]. 气象科学, 2008, 28(4): 384-388.
[3] Kharin, V.V. and Zwiers, F.W. (2005) Estimating Extremes in Transient Climate Change Simulations. Journal of Climate, 18, 1156-1173.
https://doi.org/10.1175/JCLI3320.1
[4] Semenov, V. and Bengtsson, L. (2002) Secular Trends in Daily Precipitation Characteristics: Greenhouse Gas Simulation with a Coupled AOGCM. Climate Dynamics, 19, 123-140.
https://doi.org/10.1007/s00382-001-0218-4
[5] 周曾奎. 江淮梅雨的分析和预报[M]. 北京: 气象出版社, 2006.
[6] 汪靖. 江淮流域梅雨季节的气候特征及其异常的分析研究[D]: [硕士学位论文]. 南京: 南京信息工程大学, 2007.
[7] Yoshizaki, M. (1986) Large-Scale Circulations over East Asia during Baiu Period of 1979. Journal of the Meteorological Society of Japan, 64, 409-429.
https://doi.org/10.2151/jmsj1965.64.3_409
[8] Krishna, R. and Sugi, M. (2001) Baiu Rainfall Variability and Associated Monsoon Teleconnections. Journal of the Meteorological Society of Japan, 79, 851-860.
https://doi.org/10.2151/jmsj.79.851
[9] Kawamura, R. and Murakami, T. (1998) Baiu near Japan and Its Relation to Summer Monsoons over Southeast Asia and the Western North Pacific. Journal of the Meteorological Society of Japan, 76, 619-639.
https://doi.org/10.2151/jmsj1965.76.4_619
[10] Lu, R., Oh, J.H., Kim, B.J., et al. (2001) Associations with the Interannual Variations of Onset and Withdrawal of the Changma. Advances in Atmospheric Sciences, 18, 1066-1080.
https://doi.org/10.1007/s00376-001-0023-3
[11] 陈泰然, 王重杰, 杨进贤. 台湾梅雨季对流降水之时空分布特征[J]. 大气科学, 2002, 30(1): 83-96.
[12] 吴明进, 傅达飏. 台湾梅雨季降水之年际变化[J]. 大气科学, 1987, 15(1): 31-41.
[13] 徐群. 近八十年长江中下游的梅雨[J]. 气象学报, 1965, 35(4): 507-518.
[14] 胡娅敏, 丁一汇, 廖菲. 江淮地区梅雨的新定义及其气候特征[J]. 大气科学, 2008, 32(1): 101-112.
[15] 梁萍, 丁一汇, 何金海, 等. 江淮区域梅雨的划分指标研究[J]. 大气科学, 2010, 34(2): 418-428.
[16] 章淹. 近半个世纪江淮梅雨的重大变化[J]. 科技导报, 1997, 15(9): 58-60.
[17] 徐群. 近46年江淮下游梅雨期的划分和演变特征[J]. 气象科学, 1998(4): 316-329.
[18] 魏凤英, 谢宇. 近百年长江中下游梅雨的年际及年代际振荡[J]. 应用气象学报, 2005, 16(4): 492-499.
[19] 朱正义. 暴雨 灾害(五) [M]. 北京: 气象出版社, 2001.
[20] 毛文书, 王谦谦, 李国平, 等. 近50a江淮梅雨的区域特征[J]. 气象科学, 2008, 28(1): 68-73.
[21] 中国气象局预报与网络司. 梅雨监测业务规定[S], 2014.
[22] 吴国雄, 丑纪范, 刘屹岷. 副热带高压形成和变异的动力学问题[M]. 北京: 科学出版社, 2002.
[23] 陈兴芳, 赵振国. 中国汛期降水预测研究及应用[M]. 北京: 气象出版社, 2000.
[24] 姚愚, 严华生, 程建刚. 主汛期(6-8月)副高各指数与中国160站降雨的关系[J]. 热带气象学报, 2004, 20(6): 651- 661.
[25] 梁建茵. 6月西太平洋副高脊线的年际变化及其对华南降水的影响[J]. 热带气象学报, 1994, 10(3): 274-279.
[26] 谭桂容, 孙照渤. 西太平洋副高与华北旱涝的关系[J]. 热带气象学报, 2004, 20(2): 206-211.
[27] 朱乾根. 天气学原理和方法[M]. 北京: 气象出版社, 2007.
[28] 伍荣生. 现代天气学原理[M]. 北京: 高等教育出版社, 1999.