基于微量热技术研究钼酸钙纳米饼原位生长的热动力学及机理
Based on Microcalor Technology to Research in Situ Growth Thermodynamics and Mechanism of CaMoO4 Nanocake
DOI: 10.12677/NAT.2017.72003, PDF, HTML, XML, 下载: 1,711  浏览: 4,457  国家自然科学基金支持
作者: 邱江源, 范高超, 万 婷, 肖碧源:广西民族大学化学化工学院,广西 南宁;黄在银*:广西民族大学化学化工学院,广西 南宁;广西林产化学与工程重点实验室,广西 南宁;广西高校食品安全与药物分析化学重点实验室,广西 南宁
关键词: 纳米材料热动力学原位生长微热量技术Nanomaterials Thermokinetics In-Situ Growth Microcalorimetry Techniques
摘要: 近年来,对纳米材料的生长过程研究取得了重大的进步,同时也发展了多种方法研究其生长机理。但鲜有方法能够原位的获取纳米材料生长过程的瞬时变化热动力学信息。本文利用高精度、高灵敏度的RD496-III型微量热计获得了CaMoO4纳米饼的生长过程的原位特征热谱信息,结合热动力学方程获取了CaMoO4纳米饼生长的热动力学特征生长参数阐述了其原位生长机理;CaMoO4纳米饼的生长过程经历了反应成核与晶体生长两个阶段,在298.15 K时其反应成核速率和晶体生长速率分别为1.57 × 10−3s−1、3.50 × 10−3s−1,以及深刻的诠释了原位生长过程产生的热变速率与溶液中离子浓度、晶体的成长、溶解、聚集、扩散之间的关系。本文旨在为研究纳米材料原位生长机理提供新的技术方法,进一步为纳米材料非平衡生长过程的热动力学信息的物理化学发展奠定了基础。
Abstract: In recent years, great progress has been made to investigate the growth process of nanomaterials, and its growth mechanism has also been expanded by various methods. However, there are few methods to acquire the instantaneous thermodynamics information via in situ. In this paper, we use a RD 496-III microcalorimeter with high precision and high sensitivity to obtain the in situ heat flow curves in the growth process of CaMoO4 nanocake. The growth parameters of CaMoO4 nanocake were acquired by thermodynamics equation to investigate the energy and morphology evolution of the CaMoO4 growth mechanism. Results showed that the growth process of CaMoO4 nanocake had gone through two stages, including the phase nucleation and the crystal growth, whose nucleation rate and crystal growth rate were 1.57 × 10−3s−1 and 3.50 × 10−3s−1 respectively at 298.15 K. Moreover, the relationships between the rate of heat change in situ growth process and the ion concentration, crystal growth, dissolution, gathered, and diffusion have been analyzed in-depth. This paper is aimed to provide an effective method to study the in situ crystal growth, and further to build the foundation for thermal dynamic information of non-equilibrium growth process of nanomaterials in physical chemistry development.
文章引用:邱江源, 范高超, 万婷, 肖碧源, 黄在银. 基于微量热技术研究钼酸钙纳米饼原位生长的热动力学及机理[J]. 纳米技术, 2017, 7(2): 21-28. https://doi.org/10.12677/NAT.2017.72003

参考文献

[1] Liu, T., Lai, L., Song, Z., et al. (2016) A Sequentially Triggered Nanosystem for Precise Drug Delivery and Simultaneous Inhibition of Cancer Growth, Migration, and Invasion. Advanced Functional Materials, 26, 7775-7790.
https://doi.org/10.1002/adfm.201604206
[2] Guo, D., Shibuya, R., Akiba, C., et al. (2016) Active Sites of Nitrogen-Doped Carbon Materials for Oxygen Reduction Reaction Clarified Using Model Catalysts. Science, 351, 361-365.
https://doi.org/10.1126/science.aad0832
[3] Zhao, Y., Zhu, H., Zhu, Q., et al. (2016) Three-in-One: Sensing, Self-Assembly and Cascade Catalysis of Cyclodextrin Modified Gold Nanoparticles. Journal of the American Chemical Society, 138, 16645-16654.
https://doi.org/10.1021/jacs.6b07590
[4] Tian, Y., Guo, R., Jiao, Y., et al. (2016) Redox Stimuli-Responsive Hollow Mesoporous Silica Nanocarriers for Targeted Drug Delivery in Cancer Therapy. Nanoscale Horizons, 1, 480-487.
https://doi.org/10.1039/C6NH00139D
[5] Chen, Q., Feng, L., Liu, J., et al. (2016) Intelligent Albumin-MnO2 Nanoparticles as pH-/H2O2-Responsive Dissociable Nanocarriers to Modulate Tumor Hypoxia for Effective Combination Therapy. Advanced Materials, 28, 7129-7136.
https://doi.org/10.1002/adma.201601902
[6] Sakimoto, K.K., Wong, A.B. and Yang, P. (2016) Self-Photosensitization of Nonphotosynthetic Bacteria for Solar-to- Chemical Production. Science, 351, 74-77.
https://doi.org/10.1126/science.aad3317
[7] Ding, X., Kong, L., Wang, J., et al. (2013) Highly Sensitive SERS Detection of Hg2+ Ions in Aqueous Media Using Gold Nanoparticles/Graphene Heterojunctions. ACS Applied Materials & Interfaces, 5, 7072-7078.
https://doi.org/10.1021/am401373e
[8] Cushing, B.L., Kolesnichenko, V.L. and O’Connor, C.J. (2004) Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles. Chemical Reviews, 104, 3893-3946.
https://doi.org/10.1021/cr030027b
[9] Li, C., Zhang, X. and Zhang, Z. (2004) In Situ Observation of Bamboo-Shoot-Like One-Dimensional Growth of SiOx-AgyO Nanowires Induced by Electron Beam Irradiation. Materials Letters, 58, 3573-3577.
[10] Zhang, X., Zhang, J., Chen, L., et al. (2008) Evidences Dominating the Formation of ZnO Nanostructures via In-Situ Study in an Environmental Scanning Electron Microscope. Applied Physics A, 92, 669-672.
https://doi.org/10.1007/s00339-008-4613-0
[11] He, K., Zhang, S., Li, J., et al. (2016) Visualizing Non-Equilibrium Lithiation of Spinel Oxide via in Situ Transmission Electron Microscopy. Nature Communications, 7, Article No. 11441.
[12] Kim, J.S., LaGrange, T., Reed, B.W., et al. (2008) Imaging of Transient Structures Using Nanosecond in Situ TEM. Science, 321, 1472-1475.
https://doi.org/10.1126/science.1161517
[13] Kamino, T., Yaguchi, T., Sato, T., et al. (2005) Development of a Technique for High Resolution Electron Microscopic Observation of Nano-Materials at Elevated Temperatures. Journal of Electron Microscopy, 54, 505-508.
https://doi.org/10.1093/jmicro/dfi072
[14] Goldfarb, I. (2007) In-Plane and Out-of-Plane Shape Transitions of Heteroepitaxially Self-Assembled Nanostructures. Surface Science, 601, 2756-2761.
[15] Patera, L.L., Africh, C., Weatherup, R.S., et al. (2013) In Situ Observations of the Atomistic Mechanisms of Ni Catalyzed Low Temperature Graphene Growth. ACS Nano, 7, 7901-7912.
https://doi.org/10.1021/nn402927q
[16] Aouadi, S.M. and Shreeman, M.P.K. (2004) Real-Time Spectroscopic Ellipsometry Study of Ultrathin Diffusion Barriers for Integrated Circuits. Journal of Applied Physics, 96, 3949-3954.
https://doi.org/10.1063/1.1784621
[17] Logothetidis, S., Gioti, M. and Patsalas, P. (2001) Real-Time Monitoring, Growth Kinetics and Properties of Carbon Based Materials Deposited by Sputtering. Diamond and Related Materials, 10, 117-124.
[18] Okumura, K., Yoshimoto, R., Uruga, T., et al. (2004) Energy-Dispersive XAFS Studies on the Spontaneous Dispersion of PdO and the Formation of Stable Pd Clusters in Zeolites. The Journal of Physical Chemistry B, 108, 6250-6255.
https://doi.org/10.1021/jp037187b
[19] Mohanan, S., Smetanin, M., Weissmüller, J., et al. (2009) In Situ X-Ray Diffraction Study of Co/Pd Multilayers Grown on Ta Substrate during Hydrogen Loading. Scripta Materialia, 60, 756-759.
[20] Pauporté, T., Jouanno, E., Pellé, F., et al. (2009) Key Growth Parameters for the Electrodeposition of ZnO Films with an Intense UV-Light Emission at Room Temperature. The Journal of Physical Chemistry C, 113, 10422-10431.
https://doi.org/10.1021/jp9010179
[21] Cheng, C., Xu, G. and Zhang, H. (2009) Facile Solvothermal Synthesis of Nanostructured PbSe with Anisotropic Shape: Nanocubes, Submicrometer Cubes and Truncated Octahedron. Journal of Crystal Growth, 311, 1285-1290.
[22] Yang, Y., Long, Y., Li, Z., et al. (2009) Real-Time Molecular Recognition between Protein and Photosensitizer of Photodynamic Therapy by Quartz Crystal Microbalance Sensor. Analytical Biochemistry, 392, 22-27.
[23] Tsao, M.S., Sakurada, A., Cutz, J.C., et al. (2005) Erlotinib in Lung Cancer—Molecular and Clinical Predictors of Outcome. The New England Journal of Medicine, 353, 133-144.
https://doi.org/10.1056/NEJMoa050736
[24] Denny, N.R., Li, F., Norris, D.J., et al. (2010) In Situ High Temperature TEM Analysis of Sintering in Nanostructured Tungsten and Tungsten-Molybdenum Alloy Photonic Crystals. Journal of Materials Chemistry, 20, 1538-1545.
https://doi.org/10.1039/B918423F
[25] Almeida, T.P., Fay, M.W., Hansen, T.W., et al. (2014) Insights from in Situ and Environmental TEM on the Oriented Attachment of α-Fe2O3 Nanoparticles during α-Fe2O3 Nanorod Formation. CrystEngComm, 16, 1540-1546.
https://doi.org/10.1039/C3CE41866A
[26] Zell, C.A. and Freyland, W. (2003) In Situ STM and STS Study of Co and Co-Al Alloy Electrodeposition from an Ionic Liquid. Langmuir, 19, 7445-7450.
https://doi.org/10.1021/la030031i
[27] Gao, S.L., Chen, S.P., Hu, R.Z., et al. (2002) Derivation and Application of Thermodynamic Equations. Chinese Journal of Inorganic Chemistry, 18, 362-366.
[28] Ethayaraja, M., Dutta, K. and Bandyopadhyaya, R. (2006) Mechanism of Nanoparticle Formation in Self-Assembled Colloidal Templates: Population Balance Model and Monte Carlo Simulation. The Journal of Physical Chemistry B, 110, 16471-16481.
https://doi.org/10.1021/jp0623645
[29] Zhang, L., Chen, D. and Jiao, X. (2006) Monoclinic Structured BiVO4 Nanosheets: Hydrothermal Preparation, Formation Mechanism, and Coloristic and Photocatalytic Properties. The Journal of Physical Chemistry B, 110, 2668-2673.
https://doi.org/10.1021/jp056367d