Ti-YNU-1分子筛催化氧化机理及择形选择性的理论计算
Theoretical Calculations of the Mechanism for the Catalytic Oxidation and the Shape-Selectivity in Ti-YNU-1 Zeolite
DOI: 10.12677/JAPC.2017.62008, PDF, HTML, XML, 下载: 1,484  浏览: 3,516  国家自然科学基金支持
作者: 王译晨, 李蒙召, 周丹红*:辽宁师范大学化学化工学院,辽宁 大连
关键词: 密度泛函理论Ti-YNU-1分子筛环氧化反应机理择形选择性扩散控制Density Functional Theory Ti-YNU-1 Zeolite Epoxidation Reaction Mechanism Shap Selectivity Distribution Control
摘要: 采用密度泛函理论,研究了Ti-YNU-1/H2O2体系中T3和T6位活性中心上1-己烯和环己烯环氧化反应的催化性能和反应机理。所有计算都在B3LYP/6-31G(d,p)理论水平下进行。结果表明,Ti-YNU-1分子筛中T3位的活性中心是Ti3-η2 (OOH),T6位活性中心为Ti6-η2(OOH)-H2O 和 Ti6-η2(OOH)-CH3CN。催化活性为Ti6-η2(OOH)-H2O > Ti6-η2(OOH)-CH3CN > Ti3-η2(OOH)。在各活性中心上1-己烯环氧化反应的活化能垒高于环己烯环氧化反应,随着Ti-YNU-1分子筛中Ti含量的增加,更多的Ti插入到10元环正弦孔道中的T3位,形成更多的Ti3-η2(OOH)活性中心位点,由于孔道对环己烯的扩散限制,导致1-己烯转化率增加程度高于环己烯。
Abstract: The catalytic performances and reaction mechanism of 1-hexene and cyclohexene epoxidations over active centers at the T3 and T6 sites in Ti-YNU-1/H2O2 system have been investigated by us-ing density functional theory. All calculations were performed at the theoretical level of B3LYP/6- 31G(d,p). The results indicated that the active center at T3 is Ti3-η2(OOH), and the active centers at T6 are Ti6-η2(OOH)-H2O and Ti6-η2(OOH)-CH3CN. The catalytic activity has the trend of Ti6-η2(OOH)-H2O > Ti6-η2(OOH)-CH3CN > Ti3-η2(OOH). The activation barriers of 1-hexene epoxidation over different active centers are higher than that of cyclohexene epoxidation. With the increasing of Ti content in Ti-YNU-1, more Ti species are inserted into the T3 site in the 10-membered ring channels, which accretes the numbers of Ti3-η2(OOH). Due to the distribution restrict for cyclohexene, the conversion of 1-hexene epoxidation is much higher than that of cyclohexene epoxidation.
文章引用:王译晨, 李蒙召, 周丹红. Ti-YNU-1分子筛催化氧化机理及择形选择性的理论计算[J]. 物理化学进展, 2017, 6(2): 60-67. https://doi.org/10.12677/JAPC.2017.62008

参考文献

[1] Fan, W.B., Wu, P., Namba, S., et al. (2004) A Titanosilicate That Is Structurally Analogous to an MWW-Type Lamellar Precursor. Angewandte Chemie International Edition, 43, 236-240.
https://doi.org/10.1002/anie.200352723
[2] Ruan, J.F., Wu, P., Slater, B., et al. (2005) Structure Elucidation of the Highly Active Titanosilicate Catalyst Ti-YNU- 1. Angewandte Chemie International Edition, 44, 6719-6723.
https://doi.org/10.1002/anie.200501939
[3] Fan, W.B., Wu, P., Namba, S., et al. (2006) Synthesis and Catalytic Properties of a New Titanosilicate Molecular Sieve with the Structure Analogous to MWW-Type Lamellar Precursor. Journal of Catalysis, 243, 183-191.
https://doi.org/10.1016/j.jcat.2006.07.003
[4] Shen, X.H., Fan, W.B., He, Y., et al. (2011) Epoxidation of Alkenes and their Derivatives over Ti-YNU-1. Applied Catalysis A-general, 401, 37-45.
https://doi.org/10.1016/j.apcata.2011.04.044
[5] Song, S.S., Wang, P.F., He, Y., et al. (2012) Preparation, Characterization and Catalytic Properties of Ti-Rich Ti- YNU-1. Microporous and Mesoporous Materials, 159, 74-80.
https://doi.org/10.1016/j.micromeso.2012.04.009
[6] Yang, G., Zhou, L.J., Liu, X.C., et al. (2011) Density Functional Calculations on the Distribution, Acidity, and Catalysis of TiIV and TiIII Ions in MCM-22 Zeolite. Chemistry—A European Journal, 17, 1614-1621.
https://doi.org/10.1002/chem.201002241
[7] Zhou, D.H., Zhang, H.J., Zhang, J.J., et al. (2014) Density Functional Theory Investigations into the Structure and Spectroscopic Properties of the Ti4+ Species in Ti-MWW Zeolite. Microporous and Mesoporous Materials, 195, 216- 226.
https://doi.org/10.1016/j.micromeso.2014.04.037
[8] 李娜, 蒋艳娇, 乔溢铭, 等. Ti-MWW分子筛正弦孔道内骨架钛物种的结构和红外振动光谱的理论计算[J]. 无机化学学报, 2015, 31(5): 901-907.
[9] 李娜. Ti-MWW/H2O2催化剂中钛氧活性中心的结构及电子光谱的理论计算[D]: [硕士学位论文]. 大连: 辽宁师范大学, 2015.
[10] 邹晶, 范志琳, 姜丽莎, 等. Ti-MWW分子筛钛氧活性中心与溶剂分子吸附作用的理论研究[J]. 物理化学学报, 2016, 32(4): 935-942.
[11] Qiao, Y.M., Fan, Z.L., Jiang, Y.J., et al. (2015) Structures and Vibrational Spectra of Ti-MWW Zeolite upon Adsorption of H2O and NH3: A Density Functional Theory Study. Chinese Journal of Catalysis, 36, 1733-1741.
https://doi.org/10.1016/S1872-2067(15)60900-7
[12] Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al. (2010) Gaussian 09 revision D.01. Gaussian Inc. Wallingford, CT.
[13] Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785
[14] Becke, A.D. (1988) Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical Review A, 38, 3098-3100.
https://doi.org/10.1103/PhysRevA.38.3098
[15] Fang, X.Q., Wang, Y.N., Deng, X.J., et al. (2011) Reaction Dynamics Behavior of Epoxidation of Allyl Chloride with Hydrogen Peroxide Catalyzed by Ti-MWW. Chinese Journal of Catalysis, 32, 333-339.
https://doi.org/10.3724/sp.j.1088.2011.00820
[16] Kwon, S., Schweitzer, N.M., Park, S., et al. (2015) A Kinetic Study of Vapor-Phase Cyclohexene Epoxidation by H2O2 over Mesoporous TS-1. Journal of Catalysis, 326, 107-115.
https://doi.org/10.1016/j.jcat.2015.04.005
[17] 高焕新, 卢文奎, 陈庆龄. 钛硅分子筛TS-1催化氯丙烯环氧化反应动力学研究[J]. 催化学报, 2002, 23(1): 3-8.
[18] Wang, L.L., Xiong, G., Su, J., et al. (2012) In Situ UV Raman Spectroscopic Study on the Reaction Intermediates for Propylene Epoxidation on TS-1. The Journal of Physical Chemistry C, 116, 9122-9131.
https://doi.org/10.1021/jp3017425
[19] Xiong, G., Cao, Y.Y., Guo, Z.D., et al. (2016) The Roles of Different Titanium Species in TS-1 Zeolite in Propylene Epoxidation Studied by In Situ UV Raman Spectroscopy. Physical Chemistry Chemical Physics, 18, 190-196.
https://doi.org/10.1039/C5CP05268H
[20] 周丹红, 姜丽莎, 范志琳, 等. TS-1/H2O2催化活性中心结构及活性预测[J]. 辽宁师范大学学报(自然科学版), 2016, 39(1): 70-76.
[21] Xu, L., Huang, D.-D., Li, C.G., et al. (2015) Construction of Unique Six-Coordinated Titanium Species with an Organic Amine Ligand in Titanosilicate and Their Unprecedented High Efficiency for Alkene Epoxidation. Chemical Communications, 51, 9010-9013.
https://doi.org/10.1039/C5CC02321A
[22] Vandichel, M., Leus, K., Van Der Voort, P., et al. (2012) Mechanistic Insight into the Cyclohexene Epoxidation with VO(acac)2 and Tert-Butyl Hydroperoxide. Journal of Catalysis, 294, 1-18.
https://doi.org/10.1016/j.jcat.2012.06.002
[23] Clerici, M.G. and Ingallina, P. (1993) Epoxidation of Lower Olefins with Hydrogen Peroxide and Titanium Silicalite. Journal of Catalysis, 140, 71-83.
https://doi.org/10.1006/jcat.1993.1069
[24] Fan, W.B., Wu, P., Namba, S., et al. (2004) A Titanosilicate That Is Structurally Analogous to an MWW-Type Lamellar Precursor. Angewandte Chemie International Edition, 43, 236-240.
https://doi.org/10.1002/anie.200352723
[25] Ruan, J.F., Wu, P., Slater, B., et al. (2005) Structure Elucidation of the Highly Active Titanosilicate Catalyst Ti-YNU- 1. Angewandte Chemie International Edition, 44, 6719-6723.
https://doi.org/10.1002/anie.200501939
[26] Fan, W.B., Wu, P., Namba, S., et al. (2006) Synthesis and Catalytic Properties of a New Titanosilicate Molecular Sieve with the Structure Analogous to MWW-Type Lamellar Precursor. Journal of Catalysis, 243, 183-191.
https://doi.org/10.1016/j.jcat.2006.07.003
[27] Shen, X.H., Fan, W.B., He, Y., et al. (2011) Epoxidation of Alkenes and their Derivatives over Ti-YNU-1. Applied Catalysis A-general, 401, 37-45.
https://doi.org/10.1016/j.apcata.2011.04.044
[28] Song, S.S., Wang, P.F., He, Y., et al. (2012) Preparation, Characterization and Catalytic Properties of Ti-Rich Ti- YNU-1. Microporous and Mesoporous Materials, 159, 74-80.
https://doi.org/10.1016/j.micromeso.2012.04.009
[29] Yang, G., Zhou, L.J., Liu, X.C., et al. (2011) Density Functional Calculations on the Distribution, Acidity, and Catalysis of TiIV and TiIII Ions in MCM-22 Zeolite. Chemistry—A European Journal, 17, 1614-1621.
https://doi.org/10.1002/chem.201002241
[30] Zhou, D.H., Zhang, H.J., Zhang, J.J., et al. (2014) Density Functional Theory Investigations into the Structure and Spectroscopic Properties of the Ti4+ Species in Ti-MWW Zeolite. Microporous and Mesoporous Materials, 195, 216- 226.
https://doi.org/10.1016/j.micromeso.2014.04.037
[31] 李娜, 蒋艳娇, 乔溢铭, 等. Ti-MWW分子筛正弦孔道内骨架钛物种的结构和红外振动光谱的理论计算[J]. 无机化学学报, 2015, 31(5): 901-907.
[32] 李娜. Ti-MWW/H2O2催化剂中钛氧活性中心的结构及电子光谱的理论计算[D]: [硕士学位论文]. 大连: 辽宁师范大学, 2015.
[33] 邹晶, 范志琳, 姜丽莎, 等. Ti-MWW分子筛钛氧活性中心与溶剂分子吸附作用的理论研究[J]. 物理化学学报, 2016, 32(4): 935-942.
[34] Qiao, Y.M., Fan, Z.L., Jiang, Y.J., et al. (2015) Structures and Vibrational Spectra of Ti-MWW Zeolite upon Adsorption of H2O and NH3: A Density Functional Theory Study. Chinese Journal of Catalysis, 36, 1733-1741.
https://doi.org/10.1016/S1872-2067(15)60900-7
[35] Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al. (2010) Gaussian 09 revision D.01. Gaussian Inc. Wallingford, CT.
[36] Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785
[37] Becke, A.D. (1988) Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical Review A, 38, 3098-3100.
https://doi.org/10.1103/PhysRevA.38.3098
[38] Fang, X.Q., Wang, Y.N., Deng, X.J., et al. (2011) Reaction Dynamics Behavior of Epoxidation of Allyl Chloride with Hydrogen Peroxide Catalyzed by Ti-MWW. Chinese Journal of Catalysis, 32, 333-339.
https://doi.org/10.3724/sp.j.1088.2011.00820
[39] Kwon, S., Schweitzer, N.M., Park, S., et al. (2015) A Kinetic Study of Vapor-Phase Cyclohexene Epoxidation by H2O2 over Mesoporous TS-1. Journal of Catalysis, 326, 107-115.
https://doi.org/10.1016/j.jcat.2015.04.005
[40] 高焕新, 卢文奎, 陈庆龄. 钛硅分子筛TS-1催化氯丙烯环氧化反应动力学研究[J]. 催化学报, 2002, 23(1): 3-8.
[41] Wang, L.L., Xiong, G., Su, J., et al. (2012) In Situ UV Raman Spectroscopic Study on the Reaction Intermediates for Propylene Epoxidation on TS-1. The Journal of Physical Chemistry C, 116, 9122-9131.
https://doi.org/10.1021/jp3017425
[42] Xiong, G., Cao, Y.Y., Guo, Z.D., et al. (2016) The Roles of Different Titanium Species in TS-1 Zeolite in Propylene Epoxidation Studied by In Situ UV Raman Spectroscopy. Physical Chemistry Chemical Physics, 18, 190-196.
https://doi.org/10.1039/C5CP05268H
[43] 周丹红, 姜丽莎, 范志琳, 等. TS-1/H2O2催化活性中心结构及活性预测[J]. 辽宁师范大学学报(自然科学版), 2016, 39(1): 70-76.
[44] Xu, L., Huang, D.-D., Li, C.G., et al. (2015) Construction of Unique Six-Coordinated Titanium Species with an Organic Amine Ligand in Titanosilicate and Their Unprecedented High Efficiency for Alkene Epoxidation. Chemical Communications, 51, 9010-9013.
https://doi.org/10.1039/C5CC02321A
[45] Vandichel, M., Leus, K., Van Der Voort, P., et al. (2012) Mechanistic Insight into the Cyclohexene Epoxidation with VO(acac)2 and Tert-Butyl Hydroperoxide. Journal of Catalysis, 294, 1-18.
https://doi.org/10.1016/j.jcat.2012.06.002
[46] Clerici, M.G. and Ingallina, P. (1993) Epoxidation of Lower Olefins with Hydrogen Peroxide and Titanium Silicalite. Journal of Catalysis, 140, 71-83.
https://doi.org/10.1006/jcat.1993.1069