不同热处理温度对氧化钛纳米管生物相容性的影响
The Effects of Heat Treatment Temperature to the Biocompatibility of Titania Nanotubes
DOI: 10.12677/MS.2017.73049, PDF, HTML, XML, 下载: 1,792  浏览: 6,090 
作者: 李文君, 李 欣, 王 进:西南交通大学材料先进技术教育部重点实验室,四川 成都
关键词: 二氧化钛纳米管热处理生物相容性血小板平滑肌细胞Titania Nanotubes Heat Treatment Biocompatibility Platelets Smooth Muscle
摘要: 钛金属具有优异的机械性能和良好的生物相容性,是医用植入材料的理想备选材料。通过阳极氧化手段在钛金属表面制备有序的纳米管结构能够调控多种细胞在其表面的粘附和生长行为。本研究以丙三醇,氟化铵为电解液制备出均匀有序的二氧化钛纳米管薄膜(TNT),制得的TNT管径约为100 nm。随后分别在300℃、450℃和600℃ 3个不同温度下进行热处理,得到三种不同晶型的纳米管薄膜。经过血小板粘附、平滑肌细胞增殖等一系列评价表明300℃热处理得到的锐钛矿晶型结构的TNT能够有效的抑制平滑肌增殖,600℃热处理的金红石晶型为主的TNT能够有效的抗血小板粘附。本研究可以为钛纳米管阵列在心血管植入材料中的应用提供理论支持。
Abstract: Titanium has excellent mechanical properties and good biocompatibility, and it is one alternative materials for medical devices. The highly ordered titanium dioxide nanotube (TNT) films could be prepared on the surface of titanium with the method of anodic oxidation technology, and the TNT film could regulate the adhesion and growth behavior of various cells on the surfaces. In this study, the homogeneous and ordered TNT films were prepared using the anodic oxidation method, and the electrolyte consisted of glycerol and ammonium fluoride. Meanwhile, the diameter of the TNT was about 100 nm. Then, the prepared TNT films were annealed by 300˚C, 450˚C and 600˚C, respectively where after three kinds of TNT films with different crystal forms were obtained. Subsequently, platelet adhesion and smooth muscle cell growth behavior was evaluated, and the results indicated that the TNT film with anatase crystal structure obtained by heat treated at 300˚C could effectively inhibit the proliferation of smooth muscle cells. The TNT film with 600˚C treatment could effectively reduce the number of the adhered platelet. This study could provide theoretical support of the application of TNT materials in the cardiovascular implant devices.
文章引用:李文君, 李欣, 王进. 不同热处理温度对氧化钛纳米管生物相容性的影响[J]. 材料科学, 2017, 7(3): 362-370. https://doi.org/10.12677/MS.2017.73049

参考文献

[1] Carney, R.M. and Freedland, K.E. (2016) Depression and Coronary Heart Disease. Nature Reviews Cardiology, 14, 145-155.
https://doi.org/10.1038/nrcardio.2016.181
[2] Diegeler, A., Thiele, H., Falk, V., et al. (2002) Compar-ison of Stenting with Minimally Invasive Bypass Surgery for Stenosis of the Left Anterior Descending Coronary Artery. The New England Journal of Medicine, 347, 561-566.
https://doi.org/10.1056/NEJMoa013563
[3] 潘长江, 王进, 黄楠. 血管支架内再狭窄的研究进展[J]. 中国生物医学工程学报, 2004, 23(2): 152-156.
[4] Farb, A., Weber, D.K., Kolodgie, F.D., et al. (2002) Morphological Predictors of Restenosis after Coronary Stenting in Humans. Circulation, 105, 2974-2980.
https://doi.org/10.1161/01.CIR.0000019071.72887.BD
[5] Behrendt, D. and Ganz, P. (2002) Endothelial Func-tion: From Vascular Biology to Clinical Applications. The American Journal of Cardiology, 90, L40-L48.
https://doi.org/10.1016/s0002-9149(02)02963-6
[6] Zhu, Y.T., Lowe, T.C., Valiev, R.Z., et al. (2002) Ul-trafine-Grained Titanium for Medical Implants. Google Patents.
[7] Oh, S., Daraio, C., Chen, L.H., et al. (2006) Sig-nificantly Accelerated Osteoblast Cell Growth on Aligned TiO2 Nanotubes. Journal of Biomedical Materials Research Part A, 78A, 97-103.
https://doi.org/10.1002/jbm.a.30722
[8] 何娉婷. TiO2 纳米粒子和纳米管的生物学效应及其在PP复合材料中抗菌作用的研究[D]: [博士学位论文]. 南京: 南京航空航天大学, 2012.
[9] Peng, L., Elt-groth, M.L., Latempa, T.J., et al. (2009) The Effect of TiO2 Nanotubes on Endothelial Function and Smooth Muscle Proliferation. Biomaterials, 30, 1268-1272.
https://doi.org/10.1016/j.biomaterials.2008.11.012
[10] Du, Z., Xiao, S., Xu, L., et al. (2014) Effect of Heat Treatment on Microstructure and Mechanical Properties of a New β High Strength Titanium Alloy. Materials & Design, 55, 183-190.
[11] Yao, X., Peng, R. and Ding, J. (2013) Cell-Material Interactions Revealed via Material Techniques of Surface Patterning. Advanced Materials, 25, 5257-5286.
https://doi.org/10.1002/adma.201301762
[12] Zhang, S., Yang, D., Jing, D., et al. (2014) Enhanced Photodynamic Therapy of Mixed Phase TiO2 (B)/Anatase Nanofibers for Killing of HeLa Cells. Nano Research, 7, 1659-1669.
https://doi.org/10.1007/s12274-014-0526-8
[13] Kandiel, T.A., Robben, L., Alkaim, A., et al. (2013) Brookite versus Anatase TiO2 Photocatalysts: Phase Transformations and Photocatalytic Activities. Photochemical & Photobio-logical Sciences, 12, 602-609.
https://doi.org/10.1039/C2PP25217A
[14] 王晖, 吕德义, 郇昌永, 等. 金红石型纳米TiO2的制备[J]. 化学通报, 2004, 67(5): 394.
[15] 刘洋. 基于TiO2纳米棒的表面改性及其与细胞/蛋白的相互作用研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2013.
[16] Trant, J.F., Mceachran, M.J., Sran, I., et al. (2015) Covalent Polyisobutyl-ene-Paclitaxel Conjugates for Controlled Release from Potential Vascular Stent Coatings. ACS Applied Materials & Interfaces, 7, 14506-14517.
https://doi.org/10.1021/acsami.5b04001
[17] Kasirer-Friede, A. and Shattil, S.J. (2017) Regulation of Platelet Adhesion Receptors. In: Gresele, P., Kleiman, N.S., Lopez, J.A. and Page, C.P., Eds., Platelets in Thrombotic and Non-Thrombotic Disorders, Springer, Berlin, 69-84.
https://doi.org/10.1007/978-3-319-47462-5_6
[18] Faxon, D.P., Coats, W. and Currier, J. (1997) Remodeling of the Coronary Artery after Vascular Injury. Progress in Cardiovascular Diseases, 40, 129-140.
https://doi.org/10.1016/S0033-0620(97)80005-9
[19] Libby, P. and Tanaka, H. (1997) The Molecular Bases of Restenosis. Progress in Cardiovascular Diseases, 40, 97-106.
https://doi.org/10.1016/S0033-0620(97)80002-3