可降解纯镁表面氨基三甲叉膦酸涂层的腐蚀降解性能研究
Corrosion Controlling of a Surface-Immobilized Amino Trimethylenephosphonic Acid (ATMP) Coating on Biodegradable Magnesium
DOI: 10.12677/MS.2017.73051, PDF, HTML, XML,  被引量 下载: 1,582  浏览: 3,743  国家自然科学基金支持
作者: 屈 艾, 张文泰, 蒲世民, 万国江:西南交通大学材料科学与工程学院,材料先进技术教育部重点实验室,四川 成都
关键词: 可降解镁氨基三甲叉膦酸腐蚀动电位极化测试浸泡Biodegradable Magnesium Amino Trimethylenephosphonic Acid (ATMP) Corrosion PDP Immersion
摘要: 镁及其合金因其具有在生物体内的可降解性、较好的生物相容性和优异的力学性能,因而被广泛研究应用于生物体的植入器件。然而,其过快的腐蚀降解速度以及由局部腐蚀导致过快的力学性能丧失等问题极大地限制了镁及其合金在临床中的应用。因此,本文利用液相沉积的方法在纯镁表面构建一层氨基三甲叉膦酸涂层。通过扫描电子显微镜(SEM)、傅立叶红外分析(FTIR)、X射线能谱仪(XPS)、电化学测试(PDP)以及长期浸泡实验对涂层进行表征。实验结果表明:氨基三甲叉膦酸涂层通过共价固定和螯合沉积的方式有效地构建在纯镁表面,暂态以及长期浸泡过程中明显提高了材料的耐腐蚀性能,且抑制了镁基体的局部腐蚀,增强了材料在长期服役过程中的稳定性。
Abstract: Magnesium and its alloys have been wildly used in biodegradable implant because of their bio-degradability, good biocompatibility and excellent mechanical property. At present, the rapid corrosion rate and premature mechanical failure of the implants caused by localized corrosion are the main factors that limited the application of biodegradable magnesium-base implant. In order to improve the corrosion resistance of magnesium, a uniform and dense organic phosphonate coating, amino trimethylenephosphonic acid (ATMP) was deposited on alkaline pretreated magnesium through dip-coating effectively. The coatings were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray spectroscopy (XPS), electrochemical test (PDP) and long term immersion test. The results showed a homogeneous and compact ATMP coating was formed on Mg surface by covalently surface-immobilizing and chelating reaction. And the corrosion resistance of magnesium has been improved significantly. Meanwhile, the localized corrosion was inhibited effectively during long term immersion test.
文章引用:屈艾, 张文泰, 蒲世民, 万国江. 可降解纯镁表面氨基三甲叉膦酸涂层的腐蚀降解性能研究[J]. 材料科学, 2017, 7(3): 377-386. https://doi.org/10.12677/MS.2017.73051

参考文献

[1] 愈耀庭, 主编. 生物医用材料——二十一世纪新材料丛书[M]. 天津: 天津大学出版社, 2000.
[2] 奚廷斐. 生物医用材料现状和发展趋势[J]. 中国医疗器械信息, 2006, 12(5): 1-4.
[3] Manivasagam, G. and Suwas, S. (2014) Biodegradable Mg and Mg Based Alloys for Biomedical Implants. Materials Science and Technology, 30, 515-520.
https://doi.org/10.1179/1743284713Y.0000000500
[4] Zhao, S., Chen, Y., Liu, B., et al. (2015) A Dual-Task Design of Corrosion-Controlling and Osteo-Compatible Hexamethylenediaminetetrakis-(Methylene Phosphonic Acid) (HDTMPA) Coating on Magnesium for Biodegradable Bone Implants Application. Journal of Biomedical Materials Research Part A, 103, 1640-1652.
https://doi.org/10.1002/jbm.a.35301
[5] Zhang, H., Li, X., Zhang, D., Zhang, L., Kapilashrami, M., Sun, T., Glans, P.-A., Zhu, J., Zhong, J., Hu, Z., Guo, J. and Sun, X. (2016) Comprehensive Electronic Structure Characterization of Pristine and Nitrogen/Phosphorus Doped Carbon Nanocages. Carbon, 103, 480-487.
[6] Gong, Y., Yu, B., Yang, W. and Zhang, X. (2016) Phosphorus and Nitrogen Co-Doped Carbon Dots as a Fluorescent Probe for Real-Time Measurement of Reactive Oxygen and Nitrogen Species inside Macrophages. Biosensors and Bioelectronics, 79, 822-828.
[7] Yan, X., Liu, Y., Fan, X., Jia, X., Yu, Y. and Yang, X. (2014) Nitrogen/Phosphorus Co-Doped Nonporous Carbon Nanofibers for High-Performance Supercapacitors. Journal of Power Sources, 248, 745-751.
[8] Ishizaki, T., Okido, M., Masuda, Y., et al. (2011) Corrosion Resistant Performances of Alkanoic and Phosphonic Acids Derived Self-Assembled Monolayers on Magnesium Alloy AZ31 by Vapor-Phase Method. Lang-muir, 27, 6009-6017.
https://doi.org/10.1021/la200122x
[9] Zhao, H., Cai, S., Ding, Z., et al. (2015) A Simple Method for the Prepa-ration of Magnesium Phosphate Conversion Coatings on an AZ31 Magnesium Alloy with Improved Corrosion Re-sistance. RSC Advances, 5, 24586-24590.
https://doi.org/10.1039/C5RA00329F
[10] Chen, Y., Wan, G., Wang, J., et al. (2013) Covalent Immobilization of Phytic acid on Mg by Alkaline Pre-Treatment: Corrosion and Degradation Behavior in Phosphate Buffered Saline. Corrosion Science, 75, 280-286.
[11] Shi, Z., Liu, M. and Atrens, A. (2010) Measurement of the Corrosion Rate of Magnesium Alloy Using Tafel Extrapolation. Corrosion Science, 52, 579-588.
[12] Liang, J., Srinivasan, P.B., Blawert, C., et al. (2010) Influence of Chloride ion Concentration on the Electrochemical Corrosion Behavior of Plasma Electrolytic Oxidation Coated AM50 Magnesium Alloy. Electrochemica Acta, 55, 6802-6811.