非均匀二维蜂巢晶格中手征性d + id超导态的量子蒙特卡罗探究
Quantum Monte Carlo Study of the Chiral d + id Superconducting State on the Inhomogeneous Two-Dimensional Honeycomb Lattice
DOI: 10.12677/CMP.2017.62003, PDF, HTML, XML, 下载: 1,718  浏览: 3,148  国家自然科学基金支持
作者: 方世超, 黄忠兵*:湖北大学物理与电子科学学院;高云:湖北大学材料科学与工程学院
关键词: d + id超导手征性蜂巢晶格量子蒙特卡罗d + id Superconductivity Chiral Honeycomb Lattice Quantum Monte Carlo
摘要: 本文基于哈伯德模型采用约束路径量子蒙特卡罗方法研究了非均匀二维蜂巢晶格中手征性d + id超导态随非均匀度(由蜂巢内和蜂巢间的跃迁积分之间的比值来表征)的演化特性。研究结果表明当在位库仑相互作用U较小时,手征性d + id电子配对关联函数随着非均匀度的增大先明显增加后逐渐减小,而在较大U的情况下手征性d + id电子配对关联函数随非均匀度的增大趋势被强烈抑制。我们的研究结果说明在较小U的情况下存在一个最佳的非均匀度,使得体系具有最强的手征性d + id超导态。进一步的理论分析显示磁性并不是导致超导态变化的原因。根据体系中费米能附近的电子状态数与有效在位库仑相互作用随非均匀度的变化特征,我们对手征性d + id超导态随非均匀度的演化给出了合理的解释。我们的研究对量子调控二维蜂巢晶格中的超导态提供了重要的理论思路。
Abstract: On the basis of the Hubbard model, the evolution of the chiral d + id superconducting state with the inhomogeneity on the two-dimensional honeycomb lattice is studied by using the constrained-path Monte Carlo method. We find that when the on-site U is small, the d + id pairing correlation function firstly increases with increasing the inhomogeneity, and then decreases beyond a certain inhomo-geneity. For relatively larger U, the enhancement tendency of d + id pairing correlation function is strongly suppressed. Our results indicate that there exists an optimal inhomogeneity at small U values, which optimizes the d + id superconducting state on the honeycomb lattice. Further analysis shows that magnetism is not responsible for the inhomogeneity-dependent superconductivity. In terms of the changes of the density of states at the Fermi level and the effective on-site interaction as a function of inhomogeneity, we offer a reasonable explanation for the inhomogeneity-dependent superconductivity. Our study provides an important route for controlling the superconducting state on the honeycomb lattice.
文章引用:方世超, 高云, 黄忠兵. 非均匀二维蜂巢晶格中手征性d + id超导态的量子蒙特卡罗探究[J]. 凝聚态物理学进展, 2017, 6(2): 16-26. https://doi.org/10.12677/CMP.2017.62003

参考文献

[1] Nandkishore, R., Levitov, L.S. and Chubukov, A.V. (2012) Chiral Superconductivity from Repulsive Interaction in Doped Graphene. Nature Physics, 8, 158-163.
https://doi.org/10.1038/nphys2208
[2] Pathak, S., Shenoy, V.B. and Baskaran, G. (2010)Possilble High-Temperature Superconducting State with a d+id Pairing Symmetry in Doped Graphene. Physical Review B, 81, Article ID: 085431.
https://doi.org/10.1103/PhysRevB.81.085431
[3] Black-Schaffer, A.M., Wu, W. and Hur, K.L. (2014) Chiral D-Wave Super-conductivity on the Honeycomb Lattice Close to the Mott State. Physical Review B, 90, Article ID: 054521.
https://doi.org/10.1103/PhysRevB.90.054521
[4] Shih, C.T., Lee, T.K., Eder, R., Mou, C.Y. and Chen, Y.C. (2004) Enhance-ment of Pairing Correlation by t’ in the Two-Dimensional Extended t-J Model. Physical Review Letters, 92, Article ID: 227002.
https://doi.org/10.1103/PhysRevLett.92.227002
[5] Prelovsek, P. and Ramsk, A. (2005) Spin-Fluctuation Mechanism of Su-perconductivity in Cuprates. Physical Review B, 72, Article ID: 012510.
https://doi.org/10.1103/physrevb.72.012510
[6] Veilleux, A.F., Dare, A.M., Chen, L., Vilk, Y.M. and Tremblay, A.M.S. (1995) Magnetic and Pair Correlations of the Hubbard Model with Next-Nearest-Neighbor Hopping. Physical Review B, 52, Article ID: 16255.
https://doi.org/10.1103/physrevb.52.16255
[7] Chen, K.S., Meng, Z.Y., Yang, S.X., Pruschke, T., Moreno, J. and Jarrell, M. (2013) Evolution of the Superconductivity in the Two-Dimensional Hubbard Model. Physical Review B, 88, Article ID: 245110.
https://doi.org/10.1103/physrevb.88.245110
[8] Tsai, W.F., and Kivelson, S.A. (2006) Superconductivity in Inhomogeneous Hubbard Model. Physical Review B, 73, Article ID: 214510.
https://doi.org/10.1103/physrevb.73.214510
[9] Tsai, W.F., et al. (2008) Optimal Inhomogeneity for Superconductivity: Finite-Size Studies. Physical Review B, 77, Article ID: 214502.
https://doi.org/10.1103/physrevb.77.214502
[10] Baruch, S., and Orgad, D. (2010) Contractor-Renormalization Study of Hub-bard Plaquette Clusters. Physical Review B, 82, Article ID: 134537.
https://doi.org/10.1103/physrevb.82.134537
[11] Ying, T. et al. (2014) Determinant Quantum Monte Carlo Study of D-Wave Pairing in the Plaquette Hubbard Hamiltonian. Physical Review B, 90, Article ID: 075121.
[12] Huang, Z.B., Lin, H.Q. and Gubernatis, J.E. (2001) Quantum Monte Carlo study of Spin, Charge, and Pair-ing Correlations in the t-t’-U Hubbard Model. Physical Review B, 64, Article ID: 205101.
https://doi.org/10.1103/PhysRevB.64.205101
[13] Huang, Z.B., Lin, H.Q. and Gubernatis, J.E. (2001) Pairing, Charge, and Spin Correlations in the Three-Band Hubbard Model. Physical Review B, 63, Article ID: 115112.
https://doi.org/10.1103/physrevb.63.115112
[14] Zhang, S.W., Carlson, J. and Gubernatis, J.E. (1997) Constrained Path Quan-tum Monte Carlo Method for Fermion Ground States. Physical Review B, 55, Article ID: 7464.
https://doi.org/10.1103/PhysRevB.55.7464
[15] Zhang, S.W., Carlson, J. and Gubernatis, J.E. (1997) Pairing Correlations in the Two-Dimensional Hubbard Model. Physical Review Letters, 78, Article ID: 4486.
https://doi.org/10.1103/physrevlett.78.4486
[16] Ma, T.X., Huang, Z.B., Hu, F.M. and Lin, H.Q. (2011) Pairing in Graphene: A Quantum Monte Carlo Study. Physical Review B, 84, Article ID: 121410(R).
https://doi.org/10.1103/PhysRevB.84.121410