铁电材料PbTiO3晶体结构和电子结构的杂化泛函研究
The Crystal Structure and Electronic Structure of Ferroelectric PbTiO3: A Hybrid Functional Approach
DOI: 10.12677/APP.2017.75022, PDF, HTML, XML, 下载: 1,575  浏览: 4,332 
作者: 王 鹏*, 周 琚*, 雎 胜*:苏州大学物理与光电•能源学部,江苏 苏州
关键词: 带隙杂化泛函第一性原理PbTiO3Band Gap Hybrid functional First Principles PbTiO3
摘要: 基于杂化泛函理论,我们考察了长程Hartree-Fork项在交换关联势中所占比例(α)对铁电材料PbTiO3晶体结构和电子结构的影响。我们发现基于PBE交换关联势,当α等于0.325时杂化泛函所得的带隙值与实验结果相吻合。另外,基于PBE和PW交换关联势我们分别研究了α对晶体结构的影响,基于PBE交换关联势的结果与实验值相差较大。而基于PW交换关联势的计算表明,当α等于0.2时,计算所得到的晶体结构与实验结果比较吻合,但此时带隙值却小于实验值。这些结果表明杂化泛函对于铁电材料PbTiO3的适用性还有待商榷。
Abstract: Based on the hybrid functional theory, we investigated the effect of the long range Hartree-Fork term on the crystal structure and electronic structure of ferroelectric PbTiO3. It is found that the band gap based on the PBE exchange correlation potential with α of 0.325 is in agreement with experimental result. In addition, we studied the influence of α on the crystal structure with PBE and PW exchange correlation potential, respectively. We found that PW could give a reasonable crystal structure when α is around 0.2. The band gap here, however, is less than the experimental value. Therefore, these findings indicate that the hybrid functional approach may be not suitable for ferroelectric PbTiO3.
文章引用:王鹏, 周琚, 蔡田怡, 雎胜. 铁电材料PbTiO3晶体结构和电子结构的杂化泛函研究[J]. 应用物理, 2017, 7(5): 159-164. https://doi.org/10.12677/APP.2017.75022

参考文献

[1] Lines, M.E. and Glass, A.M. (1979) Principles and Applications of Ferroelectrics and Related Materials. OUP Oxford, Ox-ford.
[2] Ramesh, R. (1997) Thin Film Ferroelectric Materials and Devices. Springer US, New York.
[3] Scott, J.F. (2000) Ferroelectric Memories. Springer-Verlag, Berlin.
[4] Kohn, W. and Sham, L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, 1133-1138.
https://doi.org/10.1103/PhysRev.140.A1133
[5] Kresse, G. and Hafner, J. (1993) Ab Initio Molecular Dynamics for Liquid Metals. Physical Review B, 47, 558-561.
https://doi.org/10.1103/PhysRevB.47.558
[6] Park, S., Lee, B., Jeon, S.H., et al. (2011) Hybrid Functional Study on Structural and Electronic Properties of Oxides. Current Applied Physics, 11, S337-S340.
https://doi.org/10.1016/j.cap.2010.09.008
[7] Eyert, V. (2011) VO2: A Novel View from Band Theory. Physical Review Letters, 107, Article ID: 016401.
https://doi.org/10.1103/physrevlett.107.016401
[8] Sarmadian, N., Saniz, R., Partoens, B., et al. (2015) Ab Initio Study of Shallow Acceptors in Bixbyite V2O3. Journal of Applied Physics, 117, Article ID: 015703.
https://doi.org/10.1063/1.4905316
[9] Ricardo, G.C. (2012) Why the Heyd-Scuseria-Ernzerh of Hybrid Functional Description of VO2 Phases is Not Correct. Physical Review B, 86, Article ID: 081101.
https://doi.org/10.1103/PhysRevB.86.081101
[10] Iori, F., Gatti, M. and Rubio, A. (2012) Role of Nonlocal Exchange in the Electronic Structure of Correclated Oxides. Physical Review B, 85, Article ID: 115129.
https://doi.org/10.1103/PhysRevB.85.115129
[11] Blochl, P.E. (1994) Projector Augmented-Wave Method. Physical Review B, 50, 17953.
https://doi.org/10.1103/PhysRevB.50.17953
[12] Kresse, G. and Furthmüller, J. (1996) Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science, 6, 15-50.
https://doi.org/10.1016/0927-0256(96)00008-0
[13] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 78, 3865-3868.
https://doi.org/10.1103/PhysRevLett.77.3865
[14] Perdew, J.P. and Wang, Y. (1992) Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Physical Review B Condensed Matter, 45, 13244-13249.
https://doi.org/10.1103/PhysRevB.45.13244
[15] Heyd, J., Scuseriaand, G.E. and Ernzerhof, M. (2003) Hybrid Functionals Based on a Screened Coulomb Potential. Journal of Chemical Physics, 118, 8207-8215.
https://doi.org/10.1063/1.1564060
[16] Kuroiwa, Y., Aoyagi, S., Sawada, A., et al. (2011) Evidence for Pb-O Covalency in Tetragonal PbTiO3. Physical Review Letters, 87, Article ID: 217601.
https://doi.org/10.1103/PhysRevLett.87.217601
[17] Peng, C.H., Chang J.F. and Desu, S. (1992) Ferroelectric Thin Films II.
[18] Gao, W.W., Abtew, T.A., Cai, T.Y., et al. (2016) On the Applicability of Hybrid Functionals for Predicting Fundamental Properties of Metals. Solid State Communications, 234, 1-50.
https://doi.org/10.1016/j.ssc.2016.02.014