应力对5d过渡金属氧化物NaOsO3的电子结构的影响的理论研究
The Strain Effect on the Band Gap of NaOsO3: First-Principles Study
DOI: 10.12677/CMP.2017.62006, PDF, HTML, XML,  被引量 下载: 1,857  浏览: 4,851  国家自然科学基金支持
作者: 马晓轩*, 胡军*:苏州大学,物理与光电•能源学部,江苏 苏州
关键词: 第一性原理应力作用带隙Slater反铁磁绝缘体NaOsO3First-Principles Strain effect Band Gap Slater Antiferromagnetic Insulator NaOsO3
摘要: 研究应力作用下材料的物理性质特别是电子结构性质对发掘材料的应用价值具有重要的指导作用。我们通过第一性原理计算方法,研究了应力作用下5d过渡金属氧化物NaOsO3的电子结构和磁学性质。我们发现对NaOsO3施加压缩应力时,NaOsO3的带隙出现反常的变化趋势,即随着压缩应力的增加,其带隙减小。分析不同应力下的电子结构发现,布里渊区不同区域对应力的响应不同。这种不同的响应是因为其不同的波函数构成所导致。当波函数为Os-dxy与O-p杂化的成键态时,其决定的能隙随应力增加而减小;反之,当波函数为Os-dxz/yz与O-p杂化的反键态,其决定的能隙随应力增加而增加。这种电子结构对应力的奇特的响应可能在将来的电子器件中有应用前景。
Abstract: Exploring the physical properties of materials under external strain is crucial for the development of their potential applications. Through first-principles calculations, we studied the effect of exter-nal strain on the electronic and magnetic properties of NaOsO3. We found that the band gap of Na-OsO3 shows abnormal behavior under compressive strain. the band gap decreases as the compres-sive strain increases. Analysis of the electronic structures reveals that different regions in the Bril-louin zone have different responses to the external strain, because of the corresponding different wavefunctions. For the places contributed from the bonding states of the hybridization between Os-dxy and O-p orbitals, the band gap decreases as the external strain increases; while for the plac-es contributed from the antibonding states of the hybridization between Os-dxz/yz and O-p orbitals, the band gap increases as the external strain increases. This intriguing feature of the band gap is of potential applications in the future electronic devices.
文章引用:马晓轩, 胡军. 应力对5d过渡金属氧化物NaOsO3的电子结构的影响的理论研究[J]. 凝聚态物理学进展, 2017, 6(2): 43-50. https://doi.org/10.12677/CMP.2017.62006

参考文献

[1] Imada, M., Fujimori, A. and Tokura, Y. (1998) Metal-Insulator Transitions. Reviews of Modern Physics, 70, 1039.
https://doi.org/10.1103/RevModPhys.70.1039
[2] Kotliar, G., Savrasov, S.Y., Haule, K., et al. (2006) Electronic Structure Cal-culations with Dynamical Mean-Field Theory. Reviews of Modern Physics, 78, 865.
[3] Cohen, R.E. (1992) Origin of Ferroelectricity in Perovskite Oxides. Nature, 358, 136-138.
https://doi.org/10.1038/358136a0
[4] Schiffer, P., Ramirez, A.P., Bao, W., et al. (1995) Low Temperature Magnetoresistance and the Magnetic Phase Diagram of La1-xCaxMnO3. Physical Review Letters, 75, 3336.
[5] Tokura, Y. and Nagaosa, N. (2000) Or-bital Physics in Transition-Metal Oxides. Science, 288, 462-468.
https://doi.org/10.1126/science.288.5465.462
[6] Pickett, W.E. (1989) Electronic Structure of the High-Temperature Oxide Su-perconductors. Reviews of Modern Physics, 61, 433.
[7] Lee, K.W. and Pickett, W.E. (2007) Orbital-Quenching-Induced Magnetism in Ba2NaOsO6. Euro Physics Letters, 80, Article ID: 37008.
[8] Mogare, K.M., Klein, W., Schilder, H., et al. (2006) Synthesis, Crystal Structure and Magnetic Properties of Na3OsO5. Zeitschriftfüranorganische Und Allgemeinechemie, 632, 2389-2394.
https://doi.org/10.1002/zaac.200600216
[9] Derakhshan, S., Greedan, J.E. and Cranswick, L.M.D. (2008) Long-Range Anti-ferromagnetic Ordering in the S = ordered Rocksalt oxide Li5OsO6: Comparison with the Isoelectronic and Isostructural Spin Glass Li4MgReO6. Physical Review B, 77, Article ID: 014408.
https://doi.org/10.1103/PhysRevB.77.014408
[10] Stitzer, K.E., Smith, M.D. and Zur Loye, H.C. (2002) Crystal Growth of Ba2MOsO6 (M = Li, Na) from Reactive Hydroxide Fluxes. Solid State Sciences, 4, 311-316.
[11] Yamamura, K., Wakeshima, M. and Hinatsu, Y. (2006) Structural Phase Transition and Magnetic Properties of Double Perovskites Ba2CaMO6 (M= W, Re, Os). Journal of Solid State Chemistry, 179, 605-612.
[12] Yonezawa, S., Muraoka, Y., Matsu-shita, Y., et al. (2004) Superconductivity in a Pyrochlore-Related Oxide KOs2O6. Journal of Physics: Condensed Matter, 16, L9.
[13] Stitzer, K.E., Abed, A.E., Smith, M.D., et al. (2003) Crystal Growth of Novel Osmium-Containing Triple Perovskites. Inor-ganic Chemistry, 42, 947-949.
[14] Krockenberger, Y., Mogare, K., Reehuis, M., et al. (2007) Sr2CrOsO6: End Point of a Spin-Polarized Metal-Insulator Transition by 5d Band Filling. Physical Review B, 75, Article ID: 020404.
https://doi.org/10.1103/physrevb.75.020404
[15] Lee, K.W. and Pickett, W.E. (2008) Half Semimetallic Antiferromagnetism in the Sr2CrTO6 system (T= Os, Ru). Physical Review B, 77, Article ID: 115101.
https://doi.org/10.1103/PhysRevB.77.115101
[16] Slater, J.C. (1951) Magnetic Effects and the Hartree-Fock Equation. Physical Re-view, 82, 538.
[17] Mandrus, D., Thompson, J.R., Gaal, R., et al. (2001) Continuous Metal-Insulator Transition in the Pyrochlore Cd2Os2O7. Physical Review B, 63, Article ID: 195104.
https://doi.org/10.1103/PhysRevB.63.195104
[18] Shinaoka, H., Miyake, T. and Ishibashi, S. (2012) Noncollinear Magnetism and Spin-Orbit Coupling in 5d Pyrochlore Oxide Cd2Os2O7. Physical Review Let-ters, 108, Article ID: 247204.
https://doi.org/10.1103/PhysRevLett.108.247204
[19] Padilla, W.J., Mandrus, D. and Basov, D.N. (2002) Searching for the Slater Transition in the Pyrochlore Cd2Os2O7 with Infrared Spectroscopy. Physical Review B, 66, Article ID: 035120.
https://doi.org/10.1103/PhysRevB.66.035120
[20] Shi, Y.G., Guo, Y.F., Yu, S., et al. (2009) Continuous Met-al-Insulator Transition of the Antiferromagnetic Perovskite NaOsO3. Physical Review B, 80, Article ID: 161104.
[21] Calder, S., Gar-lea, V.O., McMorrow, D.F., et al. (2012) Magnetically Driven Metal-Insulator Transition in NaOsO3. Physical Review Letters, 108, Article ID: 257209.
https://doi.org/10.1103/PhysRevLett.108.257209
[22] Pickett, W.E. and Singh, D.J. (1996) Electronic Struc-ture and Half-Metallic Transport in the La1-xCaxMnO3 System. Physical Review B, 53, 1146.
[23] Kresse, G. and Hafner, J. (1993) Ab Initio Molecular Dynamics for Liquid Metals. Physical Review B, 47, 558.
[24] Kresse, G., Furthmüller, J. and Hafner, J. (1995) Ab Initio Force Constant Approach to Phonon Dispersion Relations of Diamond and Graphite. Euro Physics Letters, 32, 729.
[25] Jung, M.C., Song, Y.J., Lee, K.W., et al. (2013) Structural and Correlation Effects in the Itinerant Insulating Antiferromagnetic Perovskite NaOsO3. Physical Review B, 87, Article ID: 115119.
https://doi.org/10.1103/physrevb.87.115119
[26] Kim, B.J., Jin, H., Moon, S.J., et al. (2008) Novel Jeff = 1/2 Mott State In-duced by Relativistic Spin-Orbit Coupling in Sr2IrO4. Physical Review Letters, 101, Article ID: 076402.
[27] Jin, H., Jeong, H., Ozaki, T., et al. (2009) Anisotropic Exchange Interactions of Spin-Orbit-Integrated States in Sr2IrO4 Physical Review B, 80, Article ID: 075112.
[28] Laguna-Marco, M.A., Haskel, D., Souza-Neto, N., et al. (2010) Orbital Magnetism and Spin-Orbit Effects in the Elec-tronic Structure of BaIrO3. Physical Review Letters, 105, Article ID: 216407.
https://doi.org/10.1103/PhysRevLett.105.216407
[29] Mazin, I.I. and Singh, D.J. (1997) Electronic Structure and Magnetism in Ru-Based Perovskites. Physical Review B, 56, Article ID: 2556.
https://doi.org/10.1103/physrevb.56.2556