流体力学数值模拟方法在增强型地热系统的应用分析
The Application Study of Fluid Dynamic Numerical Simulation Methods on Enhanced Geothermal System
DOI: 10.12677/IJFD.2017.52006, PDF, HTML, XML,  被引量 下载: 1,623  浏览: 3,832 
作者: 高 诚, 计秉玉, 张汝生, 牛 骏:中国石化石油勘探开发研究院,北京;张 乐:清华大学热能工程系,北京
关键词: 增强型地热系统流体力学数值模拟孔隙尺度岩心尺度场地尺度EGS Fluid Dynamic Numerical Simulation Pore Scale Core Scale Filed Scale
摘要: 增强型地热系统(EGS)作为地热资源重要的开发形式,储量十分丰富,开发利用前景广阔,所以EGS的开发利用引起国际社会和研究领域的广泛关注。本文从孔隙尺度(PSM)、岩心尺度(CSM)到场地尺度(FSM)3种流体力学模拟方法展开分析,阐述了不同数值方法在增强型地热系统的应用现状、技术优势和存在的问题。认为可将PSM方法作为基础模型,3种不同尺度的数值模拟方法有机协同地联系在一起,为基于增强型地热系统的数值模拟方法研究指明了方向。
Abstract: Enhanced geothermal system (EGS) is a kind of important geothermal resources developing pat-tern which owns rich resources. EGS has been received great and popular attention from international community and research institutes since it is proposed. This paper conducts analytical research form pore scale simulation method (PSM), core scale simulation method (CSM) and filed scale simulation method (FSM) to illustrate current application status, technical advantage and existing problems. Finally, it is suggested that PSM should be used as the primary model for the EGS simulation. This work pointed out research direction for EGS simulation area.
文章引用:高诚, 计秉玉, 张汝生, 牛骏, 张乐. 流体力学数值模拟方法在增强型地热系统的应用分析[J]. 流体动力学, 2017, 5(2): 47-55. https://doi.org/10.12677/IJFD.2017.52006

参考文献

[1] Wang, G.L., Li, K.W., Wen, D.G., et al. (2013) Assessment of Geothermal Resources in China. Proceedings of Thirty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford.
[2] Tester, J.W., Anderson, B.J., Batchelor, A.S., Blackwell, D.D., Di Pippo, R., Drake, E.M., Garnish, J., Livesay, B., Moore, M.C., Nichols, K., Petty, S., Toksoz, M.N. and Veatch, R.W. (2006) The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century, Massachusetts Institute of Technology, DOE Contract DE-AC07-05ID14517 Final Report.
[3] Huang, S.P. (2012) Geothermal Energy in China. Nature Climate Change, 2, 557-560.
https://doi.org/10.1038/nclimate1598
[4] Brown, D.W. (2000) A Hot Dry Rock Geothermal Energy Concept Utilizing Supercritical CO2 Instead of Water. Proceedings of Twenty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford.
[5] 詹麒. 国内外地热开发利用现状浅析[J]. 理论月刊, 2009(7): 71-75.
[6] Mora, P., Wang, Y.C. and Alonso-Marroquin, F. (2015) Lattice Solid/Boltzmann Microscopic Model to Simulate Solid/Fluid Systems—A Tool to Study Creation of Fluid Flow Networks for Viable Deep Geothermal Energy. Journal of Earth Science, 26, 11-19.
https://doi.org/10.1007/s12583-015-0516-0
[7] Anissofira, A. and Latief, F.D.E. (2015) Permeability Estimation of Crack Type and Granular Type of Pore Space in a Geothermal Reservoir Using Lattice Boltzmann Method and Kozeny-Carman Relation. Proceedings World Geo- thermal Congress.
[8] Lomize, G.M. (1951) Flow in Fractured Rocks. Gesemergoizdat, Moscow.
[9] Berman, A.S. (1953) Laminar Flow in Channels with Porous Walls. Journal of Applied Physics, 24, 1232-1235.
https://doi.org/10.1063/1.1721476
[10] Cheng, A.H.D., Ghassemi, A. and Detournay, E. (2001) Integral Equation Solution of Heat Extraction from a Fracture in Hot Dry Rock. International Journal for Numerical and Analytical Methods in Geomechanics, 25, 1327-1338.
https://doi.org/10.1002/nag.182
[11] Gringarten, A.C., Witherspoon, P.A. and Ohnishi, Y. (1975) Theory of Heat Extraction from Hot Dry Rock. Journal of Geophysical Research, 80, 1120-1124.
https://doi.org/10.1029/JB080i008p01120
[12] Doe, T., McLaren, R. and Dershowitz, W. (2014) Discrete Fracture Network Simulations of Enhanced Geothermal Systems. Proceedings of Thirty-Ninth Workshop on Geothermal Reservoir Engineering Stanford University, 24-26 February 2014, Stanford, California.
[13] Luo, F., Xu, R.N. and Jiang, P.X. (2014) Numerical Investigation of Fluid Flow and Heat Transfer in a Doublet Enhanced Geothermal System with CO2 as the Working Fluid (CO2-EGS). Energy, 64, 307-322.
https://doi.org/10.1016/j.energy.2013.10.048
[14] Ghassemi, A., Tarasovs, S. and Cheng, A.H.-D. (2003) An Integral Equation Solution for Three-Dimensional Heat Extraction from Planar Fracture in Hot Dry Rock. International Journal of Numerical and Analytical Methods in Geomechanics, 27, 989-1004.
https://doi.org/10.1002/nag.308
[15] Mohais, R., Xu, C.S. and Dowd, P. (2011) Fluid Flow and Heat Transfer within a Single Horizontal Fracture in an Enhanced Geothermal System. Journal of Heat Transfer, 133, 40-45.
https://doi.org/10.1115/1.4004369
[16] Fox, D.B., Sutter, D., Beckers, K.F., Lukawski, M.Z., Koch, D.L., Anderson, B.J., et al. (2013) Sustainable Heat Farming: Modeling Extraction and Recovery in Discretely Fractured Geothermal Reservoirs. Geothermics, 46, 42-54.
https://doi.org/10.1016/j.geothermics.2012.09.001
[17] Lu, W. and Xiang, Y.Y. (2012) Analysis of the Instantaneous Local Thermal Equilibrium Assumption for Heat Exchange between Rock Matrix and Fracture Water. Advanced Materials Research, 594-597, 2430-2437.
https://doi.org/10.4028/www.scientific.net/AMR.594-597.2430
[18] Zeng, Y.C., Wu, N.Y., Su, Z., et al. (2013) Numerical Simulation of Heat Production Potential from Hot Dry Rock by Water Circulating through a Novel Single Vertical Fracture at Desert Peak Geothermal Field. Energy, 63, 268-282.
https://doi.org/10.1016/j.energy.2013.10.036
[19] Kolditz, O. (1995) Modelling Flow and Heat Transfer in Fractured Rocks: Conceptual Model of a 3-d Deterministic Fracture Network. Geothermics, 24, 451-470.
https://doi.org/10.1016/0375-6505(95)00020-Q
[20] Witherspoon, P.A., Wang, J.S.Y., Iwai, K., et al. (1980) Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture. Water Resources Research, 16, 1016-1024.
https://doi.org/10.1029/WR016i006p01016
[21] 陈必光, 宋二祥, 程晓辉. 二维裂隙岩体渗流传热的离散裂隙网络模型数值计算方法[J]. 岩石力学与工程学报. 2014, 33(1): 43-51.
[22] Kolditz, O. and Clauser, C. (1998) Numerical Simulation of Flow and Heat Transfer in Fractured Crystalline Rocks: Application to the Hot Dry Rock Site in Rosemanowes (U.K.), Geothermics, 27, 1-23.
https://doi.org/10.1016/S0375-6505(97)00021-7
[23] Shaik, A.R., Rahman, S.S., Tran, N.H. and Tran, T. (2011) Numerical Simulation of Fluid-Rock Coupling Heat Transfer in Naturally Fractured Geothermal System. Applied Thermal Engineering, 31, 1600-1606.
https://doi.org/10.1016/j.applthermaleng.2011.01.038
[24] Bataille, A., Genthon, P., Rabinowicz, M., et al. (2006) Modeling the Coupling between Free and Forced Convection in a Vertical Permeable Slot: Implications for the Heat Production of an Enhanced Geothermal System. Geothermics, 35, 654-682.
https://doi.org/10.1016/j.geothermics.2006.11.008
[25] Blocher, M.G., Zimmermann, G., Moeck, I., et al. (2010) 3D Numerical Modeling of Hydrothermal Processes during the Lifetime of a Deep Geothermal Reservoir. Geofluids, 10, 406-421.
https://doi.org/10.1111/j.1468-8123.2010.00284.x
[26] Zeng, Y.C., Su, Z. and Wu, N.Y. (2013) Numerical Simulation of Heat Production Potential from Hot Dry Rock by Water Circulating through Two Horizontal Wells at Desert Peak Geothermal Field. Energy, 56, 92-107.
https://doi.org/10.1016/j.energy.2013.04.055
[27] Huang, X.X., Zhu, J.L., Niu, C.K., et al. (2014) Heat Extraction and Power Production Forecast of a Prospective Enhanced Geothermal System site in Songliao Basin, China. Energy, 75, 360-370.
https://doi.org/10.1016/j.energy.2014.07.085
[28] Zhang, Y.J., Li, Z.W., Guo, L.L., Gao, P., Jin, X.P. and Xu, T.F. (2014) Electricity Generation from Enhanced Geothermal Systems by Oilfield Produced Water Circulating through Reservoir Stimulated by Staged Fracturing Technology for Horizontal Wells: A Case Study in Xujiaweizi Area in Daqing Oilfield, China. Energy, 78, 788-805.
https://doi.org/10.1016/j.energy.2014.10.073