燃烧室结构的热-声-振耦合特性模拟分析研究
Simulation Analysis of the Thermo-Acoustic-Vibration Coupling of Combustion Chamber Structures
DOI: 10.12677/OJAV.2017.52006, PDF, HTML, XML, 下载: 2,092  浏览: 5,329  国家自然科学基金支持
作者: 郑 敏*, 徐一鸣, 刘 涛:南京航空航天大学民航工程系,江苏 南京;申 凡:南京航空航天大学振动工程研究所,江苏 南京
关键词: 热-声-振耦合流-固耦合模态分析燃烧室Thermo-Acoustic-Vibration Coupling Fluid-Structure Coupling Modal Analysis Combustion Chamber
摘要: 在发动机运行过程中,燃烧室内部时刻发生着剧烈的燃烧,不可避免地存在热-声-振耦合作用,长期的高温高压高声强工作环境会对燃烧室结构疲劳寿命和发动机正常工作产生至关重要的影响。本文利用ANSYS-WORKBENCH软件以单向耦合的方式对燃烧室结构的热-声-振特性进行了模拟分析,即先在FLUENT模块中进行燃烧运算得到流体域温度场、压力场等,然后利用稳态热分析模块获得结构上的温度场分布,最后把得到的温度场和压力场作为预应力施加给结构,对内部填充气体的燃烧室做了有预应力的单向热-声-振耦合模态分析,也对不考虑声-振耦合的燃烧室结构做了热-振耦合模态分析,得到了8阶模态频率和模态振型。结果表明,低阶模态主要包含了弯曲模态和扭转模态,而空腔模态在较高频率才出现。此外,考虑声-振耦合作用得到的各阶模态频率比不考虑声-振耦合得到的模态频率要小。
Abstract: During the aero-engine operation, the intense combustion happens inside the combustion cham-ber and the thermo-acoustics-vibration interaction exists unavoidably. The operating environ-mental under high temperature, high pressure and high acoustical level has a great influence on the fatigue life of the structure and the normal operation of the aero-engine. Simulation analysis of the thermo-acoustics-vibration of combustion chamber was done through one-way coupling by ANSYS-WORKBENCH software. At first the combustion computing was done in FLUENT module in order to obtain the data of temperature and pressure fields. Then the temperature distribution on the structure through steady thermal analysis module was obtained to feed into the pre-stress structure. Modal parameters including eight modal frequencies and eight mode shapes were identified both by one-way thermo-acoustics-vibration coupling and thermo-vibration coupling. The results show that bending and torsional modes appear at lower frequencies earlier, and the cavity modes appear at higher frequencies. In addition, modal frequencies from one-way thermo-acoustics-vibration coupling are lower than those from uncoupling.
文章引用:郑敏, 申凡, 徐一鸣, 刘涛. 燃烧室结构的热-声-振耦合特性模拟分析研究[J]. 声学与振动, 2017, 5(2): 34-44. https://doi.org/10.12677/OJAV.2017.52006

参考文献

[1] Prakash, A., Diwakar, P., Lin, D., Deane, P., Liu, Y.Q. and Jaouhari, M. (2015) Acoustic Vibration Induced Fatigue in Pipe Joints. Proceedings of the ASME 2015 Pressure Vessels and Piping Conference PVP2015, Boston, Massachusetts, USA, 19-23 July 2015.
https://doi.org/10.1115/pvp2015-45799
[2] 张冬梅. 某型航空发动机环形燃烧室火焰筒声学模态分析[J]. 沈阳航空工业学院学报, 2008, 25(4): 22-25.
[3] 尹帮辉, 艾延廷, 陈彦斌, 李川. 航空发动机环形燃烧室模型内部声场特性分析[J]. 沈阳航空工业学院学报, 2009, 26(5): 27-30.
[4] 艾延廷, 王昌旭, 郭晓玲. 燃烧室结构声耦合特性研究[J]. 中国机械工程, 2014, 25(15): 2008-2012.
[5] 郭晓玲, 艾延廷, 姜苏, 李松金. 燃烧室模型倒角对结构声影响的数值计算[J]. 沈阳航空航天大学学报, 2012, 29(3): 10-15.
[6] 郭晓玲, 艾延廷, 张婷婷. 燃烧室模型薄壁结构的声固耦合有限元分析[J]. 沈阳航空航天大学学报, 2013, 30(1): 20-25.
[7] 赵银燕, 刘旭, 秦卫阳. 航空飞行器发动机燃烧室声振耦合分析[J]. 计算机仿真, 2014, 31(11): 108-112.
[8] 李彦斌, 张鹏, 邹元杰, 吴邵庆, 费庆国. 随机基础激励下承力筒—蒙皮结构的声—固耦合分析[J]. 宇航学报, 2015, 36(2): 236-242.
[9] 沙云东, 魏静, 高志军. 热声载荷作用下薄壁结构的非线性响应特性[J]. 航空学报, 2013, 34(6): 1336-1346.
[10] Altunlu, A.C., Shahi, M., Pozarlik, A., van der Hoogt, P.J.M., Kok, J.B.W. and de Boer, A. (2012) Fluid-Structure Interaction on the Combustion Instability. ICSV19, Vilnius, Lithuania, 8-12 July 2012.
[11] Pozarlik, A.K. and Kok, J.B. (2012) Experimental Investigation and Numerical Prediction of Thermo-acoustic Instabilities and Associated Liner Vibrations Induced by Combustion Process in Gas Turbines. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, 9-12 January 2012, 1-17.
[12] Shahi, M. (2014) Modeling of Complex Physics and Combustion Dynamics in a Combustor with a Partially Premixed Turbulent Flame. PhD Thesis, University of Twente, Enschede, The Netherlands.
[13] Altunlu, A.C. (2013) The Analysis of Mechanical Integrity in Gas Turbine Engines Subjected to Combustion Instabilities. PhD Thesis, University of Twente, Enschede, The Netherlands.
[14] 刘军. 基于时变工况的发动机燃烧室热-声-振耦合实验设计研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2016.

为你推荐