图像隐写分析研究新进展
Recent Advances in Image Steganalysis
DOI: 10.12677/JISP.2017.63016, PDF, HTML, XML,  被引量 下载: 2,598  浏览: 9,776  国家自然科学基金支持
作者: 董 晶:中科院自动化研究所模式识别国家重点实验室智能感知中心,北京;中科院信息工程研究所信息安全国家重点实验室,北京;钱银龙*:中科院自动化研究所模式识别国家重点实验室智能感知中心,北京;中国科学技术大学自动化系,安徽 合肥;王 伟:中科院自动化研究所模式识别国家重点实验室智能感知中心,北京
关键词: 隐写术隐写分析通用隐写分析模式识别深度学习Steganography Steganalysis Universal Steganalysis Pattern Recognition Deep Learning
摘要: 隐写分析是信息安全领域一个很重要的研究方向。随着研究的快速发展,已经有大量的隐写分析方法提出。本文的目的是对近几年图像隐写分析领域的新进展和新思路进行梳理和总结,以给领域内的研究者提供参考。文章首先对传统基于人工特征的隐写分析新进展进行总结,进而重点介绍了隐写领域中新提出的基于深度学习的隐写分析方法。最后,文章对隐写分析的研究面临的挑战以及研究趋势进行了讨论。
Abstract: In recent years, steganalysis has become an important research direction in information security. With rapid development, numerous methods have been proposed to solve the steganalysis problem. This article aims to review recent advances in image steganalysis to provide useful information to the researchers in this field. It first summarizes recent progress in traditional handcrafted feature based methods, and then introduces the deep learning based steganalysis, which is a new trend in steganalysis. Finally, the article summarizes the future trends and challenges in steganalysis.
文章引用:董晶, 钱银龙, 王伟. 图像隐写分析研究新进展[J]. 图像与信号处理, 2017, 6(3): 131-138. https://doi.org/10.12677/JISP.2017.63016

参考文献

[1] Kodovsky, J., Fridrich, J. and Holub, V. (2012) Ensemble Classifiers for Steganalysis of Digital Media. IEEE Transactions on Information Forensics and Security, 7, 432-444.
https://doi.org/10.1109/TIFS.2011.2175919
[2] Harmsen, J.J. and Pearlman, W.A. (2003) Steganalysis of Additive-Noise Modelable Information Hiding. SPIE Proceedings, 5020, 131-142.
https://doi.org/10.1117/12.476813
[3] Ker, A.D. (2005) Steganalysis of LSB Matching in Grayscale Images. IEEE Signal Processing Letters, 12, 441-444.
https://doi.org/10.1109/LSP.2005.847889
[4] Lyu, S. and Farid, H. (2002) Detecting Hidden Messages Using Higher-Order Statistics and Support Vector Machines. Springer, Berlin.
[5] Shi, Y.Q., et al. (2005) Effective Steganalysis Based on Statistical Moments of Wavelet Characteristic Function. International Conference on Information Technology: Coding and Computing, 1, 768-773.
https://doi.org/10.1109/itcc.2005.138
[6] Fridrich, J., Goljan, M. and Holotyak, T. (2006) New Blind Steganalysis and Its Implications. Proc Spie, 6072, 1-13.
[7] Xuan, G.R., et al. (2005) Steganalysis Based on Multiple Features Formed by Statistical Moments of Wavelet Characteristic Functions. Springer, Berlin.
[8] Chen, X., et al. (2006) Blind Image Steganalysis Based on Statistical Analysis of Empirical Matrix. International Conference on Pattern Recognition, 3, 1107-1110.
[9] Dong, J. and Tieniu, T. (2008) Blind Image Steganalysis Based on Run-Length Histogram Analysis. IEEE International Conference on Image Processing, 2008, 2064-2067.
https://doi.org/10.1109/icip.2008.4712192
[10] Pevn`y, T., Filler, T. and Bas, P. (2010) Using High-Dimensional Image Models to Perform Highly Undetectable Steganography. Springer, Berlin.
[11] Holub, V. and Fridrich, J. (2012) Designing Steganographic Distortion Using Directional Filters. IEEE International Workshop on Information Forensics and Security (WIFS), 2, 234-239.
https://doi.org/10.1109/WIFS.2012.6412655
[12] Holub, V. and Fridrich, J. (2013) Digital Image Steganography Using Universal Distortion. Proceedings of the First ACM Workshop on Information Hiding and Multimedia Security, Montpellier, 17-19 June 2013, 59-68.
https://doi.org/10.1145/2482513.2482514
[13] Sedighi, V., Cogranne, R. and Fridrich, J. (2016) Content-Adaptive Steganography by Minimizing Statistical Detectability. IEEE Transactions on Information Forensics and Security, 11, 221-234.
https://doi.org/10.1109/TIFS.2015.2486744
[14] Li, B., Wang, M., Li, X., Tan, S. and Huang, J. (2015) A Strategy of Clustering Modification Directions in Spatial Image Steganography. IEEE Transactions on Information Forensics and Security, 10, 1905-1917.
https://doi.org/10.1109/TIFS.2015.2434600
[15] Fridrich, J., et al. (2011) Breaking HUGO—The Process Discovery. Information Hiding-international Conference, 6958, 85-101.
https://doi.org/10.1007/978-3-642-24178-9_7
[16] Jan, K. and Fridrich, J. (2011) Steganalysis in High Dimensions: Fusing Classifiers Built on Random Subspaces. Proceedings of SPIE—The International Society for Optical Engineering, 7880, 181-197.
[17] Fridrich, J. and Kodovsky, J. (2012) Rich Models for Steganalysis of Digital Images. IEEE Transactions on Information Forensics and Security, 7, 868-882.
[18] Holub, V. and Fridrich, J. (2013) Random Projections of Residuals for Digital Image Steganalysis. IEEE Transactions on Information Forensics and Security, 8, 1996-2006.
https://doi.org/10.1109/TIFS.2013.2286682
[19] Shi, Y.Q., Sutthiwan, P. and Chen, L. (2012) Textural Features for Steganalysis. International Workshop on Information Hiding, 7692, 63-77.
[20] Tang, W., Li, H., Luo, W. and Huang, J. (2014) Adaptive Steganalysis against WOW Embedding Algorithm. In: Uhl, A. Katzenbeisser, S. Kwitt, R. and Piva, A., Eds., 2nd ACM IH&MMSec, ACM Workshop on Information Hiding & Multimedia Security, Salzburg, 91-96.
https://doi.org/10.1145/2600918.2600935
[21] Denemark, T., Sedighi, V., Holub, V., Cogranne, R. and Fridrich, J. (2014) Selection-Channel-Aware Rich Model for Steganalysis of Digital Images. IEEE International Workshop on Information Forensics and Security, 2015, 48-53.
https://doi.org/10.1109/wifs.2014.7084302
[22] Hinton, G.E. and Salakhutdinov, R.R. (2006) Reducing the Dimensionality of Data with Neural Networks. Science, 313, 504-507.
https://doi.org/10.1126/science.1127647
[23] Salakhutdinov, R. and Hinton, G. (2009) Deep Boltzmann Machines. Journal of Machine Learning Research, 5, 1967-2006.
[24] Larochelle, H., Bengio, Y., Louradour, J. and Lamblin, P. (2009) Exploring Strategies for Training Deep Neural Networks. The Journal of Machine Learning Research, 10, 1-40.
[25] Cun, Y.L., Bottou, L., Bengio, Y. and Haffner, P. (1998) Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86, 2278-2324.
https://doi.org/10.1109/5.726791
[26] Goodfellow, I.J., et al. (2014) Generative Adversarial Nets. International Conference on Neural Information Processing Systems, 3, 2672-2680.
[27] Qian, Y., Dong, J., Wang, W. and Tan, T. (2015) Deep Learning for Steganalysis via Convolutional Neural Networks. IS&T/SPIE Electronic Imaging, 9409, 94090J-94090J-10.
[28] Pibre, L., Jérôme, P., Ienco, D. and Chaumont, M. (2016) Deep Learning is a Good Steganalysis Tool when Embedding Key is Reused for Different Images, even if there is a Cover Source-Mismatch. Media Watermarking, Security, & Forensics, 4, 79-95.
[29] Xu, G., Wu, H.Z. and Shi, Y.Q. (2016) Structural Design of Convolutional Neural Networks for Steganalysis. IEEE Signal Processing Letters, 23, 708-712.
https://doi.org/10.1109/LSP.2016.2548421
[30] Qian, Y., Dong, J., Wang, W. and Tan, T. (2016) Learning and Transferring Representations for Image Steganalysis Using Convolutional Neural Network. 2016 IEEE International Conference on Image Processing (ICIP), 2016, 2752- 2756.
https://doi.org/10.1109/ICIP.2016.7532860
[31] Qian, Y.L., Dong, J., Wang, W. and Tan, T.N. (2015) Learning Representations for Steganalysis from Regularized CNN Model with Auxiliary Tasks. International Conference on Communications, Signal Processing, and Systems (CSPS), Chengdu, 23-24 October 2015, 629-637.
[32] Xu, G.S., Wu, H.Z. and Yun, Q.S. (2016) Ensemble of CNNs for Steganalysis: an Empirical Study. Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, 2016, 103-107.
https://doi.org/10.1145/2909827.2930798