修正的归一化差分建成区指数及建成区提取后处理方法研究
Investigation of a Modified Normalized Built-Up Index and a Post Processing Scheme for BUILT-UP Extraction in Urban Area
DOI: 10.12677/GST.2017.53011, PDF, HTML, XML,  被引量 下载: 1,621  浏览: 4,271 
作者: 胡月瑶:武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉
关键词: Landsat建成区提取指数后处理Landsat Built-up Extraction Index Post Processing
摘要: 及时、有效地获取城市中的建成区信息对进行合理的城市规划和管理有十分重要的意义。遥感数据具有来源广、覆盖范围大、实时采集的特点,包含丰富的地面信息,是进行城市信息采集和监测的有效手段。针对现有的利用遥感影像进行建成区提取中存在的裸土和建成区混分问题,根据建成区的光谱特征,本文提出了一种基于Landsat影像的修正的归一化差分建成区指数(Modified Normalized Difference Built-up Index,MNDBI),并针对建成区的指数提取结果提出了相应的后处理框架,主要包括聚类去裸土和形态学偏重建两步。后处理中,第一步可以去除建成区提取结果中混杂的裸土,提高建成区提取的正确率,第二部可以减少提取结果中建成区的漏分,降低漏检率。实验结果显示,MNDBI相对于现有的建成区指数,可以更好的区分裸土和建成区,提高建成区的指数提取精度。指数提取后处理步骤可以有效的降低建成区指数提取的漏检率,减少虚警,进一步提高提取精度。
Abstract: As remotely sensed data can provide consistent and substantially information of the earth, it has become a common tool to explore the land surface timely and effectively. Specifically, it is widely applied in monitoring the built-up surfaces in urban area, which is significant for urban planning and management. To alleviate the confusion between built-up area and bare soil which is one of the major difficulties in the extraction of built-up area, this article proposes a novel Modified Normalized Difference Built-up Index (MNDBI). Moreover, a two-step post processing scheme, including clustering and morphological partial reconstruction, is also presented follow the built-up extraction. During the two-step post processing, missed built-up pixels can be filled up and the rest bare soil pixels can also be excluded. The proposed MNDBI index demonstrates better results and accuracies comparing to the existing built-up indices in our experiments. In addition, the two-step post processing can further alleviate false alarm and missed alarm and improve the extraction accuracy of built-up area.
文章引用:胡月瑶. 修正的归一化差分建成区指数及建成区提取后处理方法研究[J]. 测绘科学技术, 2017, 5(3): 83-92. https://doi.org/10.12677/GST.2017.53011

参考文献

[1] 宫鹏, 张伟, 俞乐, 等. 全球地表覆盖制图研究新范式[J]. 遥感学报, 2016, 20(5): 1002-1016.
[2] Hu, X. and Weng, Q. (2009) Estimating Impervious Surfaces from Medium Spatial Resolution Imagery Using the Self-Organizing Map and Multi-Layer Perceptron Neural Networks. Remote Sensing of Environment, 113, 2089-2102.
https://doi.org/10.1016/j.rse.2009.05.014
[3] Deng, C. and Wu, C. (2013) A Spatially Adaptive Spectral Mixture Analysis for Mapping Subpixel Urban Impervious Surface Distribution. Remote Sensing of Environment, 133, 62-70.
https://doi.org/10.1016/j.rse.2013.02.005
[4] Zha, Y., Gao, J. and Ni, S. (2003) Use of Normalized Difference Built-Up Index in automatically Mapping Urban Areas from TM Imagery. International Journal of Remote Sensing, 24, 583-594.
https://doi.org/10.1080/01431160304987
[5] Xu, H. (2008) A New Index for Delineating Built-Up Land Features in Satellite Imagery. International Journal of Remote Sensing, 29, 4269-4276.
https://doi.org/10.1080/01431160802039957
[6] Xu, H. (2007) Extraction of Urban Built-Up Land Features from Landsat Imagery Using a Thematic-Oriented Index Combination Technique. Photogrammetric Engineering and Remote Sensing Journal, 73, 1381-1391.
https://doi.org/10.14358/PERS.73.12.1381
[7] He, C., Shi, P., Xie, D. and Zhao, Y. (2010) Improving the Normalized Difference Built-Up Index to Map Urban Built-Up Areas Using a Semiautomatic Segmentation Approach. Remote Sensing Letters, 1, 213-221.
[8] Pan, X.Z., Uchida, S., Liang, Y., Hirano, A. and Sun, B. (2010) Discriminating Different Landuse Types by Using Multitemporal NDXI in a Rice Planting Area. International Journal of Remote Sensing, 31, 585-596.
https://doi.org/10.1080/01431160902894442
[9] Ward, D., Phinn, S.R. and Murray, A.T. (2000) Monitoring Growth in Rapidly Urbanizing Areas Using Remotely Sensed Data. The Professional Geographer Journal, 52, 371-386.
https://doi.org/10.1111/0033-0124.00232
[10] Phinn, S., Stanford, M., Scarth, P., Murray, A.T. and Shyy, P.T. (2002) Monitoring the Composition of Urban Environments Based on the Vegetation-Impervious Surface-Soil (VIS) Model by Subpixel Analysis Techniques. International Journal of Remote Sensing, 23, 4131-4153.
https://doi.org/10.1080/01431160110114998
[11] Ridd, M.K. (1995) Exploring a V-I-S (Vegetation-Impervious Surface-Soil) Model for Urban Ecosystem Analysis through Remote Sensing: Comparative Anatomy for Cities. International Journal of Remote Sensing, 16, 2165-2185.
https://doi.org/10.1080/01431169508954549
[12] 任获荣. 数学形态学及其应用[D]: [博士学位论文]. 西安: 西安电子科技大学, 2004.
[13] Bellens, R., et al. (2008) Improved Classification of VHR Images of Urban Areas Using Directional Morphological Profiles. IEEE Transactions on Geoscience & Remote Sensing, 46, 2803-2813.
[14] Liao, W., Member, S., Bellens, R., Member, S. and Pižurica, A. (2012) Classification of Hyperspectral Data over Urban Areas Using Directional Morphological Profiles and Semi-Supervised Feature Extraction. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5, 1177-1190.
https://doi.org/10.1109/JSTARS.2012.2190045