基于热示踪法河流潜流带潜流通量计算参数敏感性分析——以渭河西安段为例
Sensitivity Analysis of Hyporheic Flux Calculation Parameters in Hyporheic Zone of River Based on Thermal Tracing Method—A Case of Weihe River Xi’an Section
DOI: 10.12677/APF.2017.71001, PDF, HTML, XML, 下载: 1,758  浏览: 4,090  科研立项经费支持
作者: 李英豪, 霍艾迪, 冯 玮, 陈星宇, 杜 璨, 申 航:长安大学环境科学与工程学院,陕西 西安;长安大学旱区地下水文与生态效应教育部重点实验室,陕西 西安
关键词: 热示踪法潜流带敏感性分析潜流通量The Thermal Tracer Method Hyporheic Zone Sensitivity Analysis Hydroheic Flux
摘要: 由于热示踪法计算河流潜流通量无法克服温度数据估计潜流交换的部分缺点,河床的空间异质性以及河床一些热学参数的选取对潜流通量计算结果影响比较大。为提高计算结果的准确性,计算参数的敏感性尤为重要。以渭河西安段为例,利用VFLUX工具箱2.0.0版对孔隙度、河床骨架热容、水热容、热弥散度、有效热传导系数代入典型值以及上下边界值通过计算得到的振幅比法结果的变化量、变化率进行敏感性分析。结果表明:在河床为深度0.05~0.70 m时,潜流通量随孔隙度、河床体积热容增大而增大,随水体积热容增大而减小。热弥散在0~0.01取值时不影响潜流通量结果。热传导系数对潜流通量的影响随深度不同而发生变化。同参数在不同深度的敏感性强弱也有所不同:水体积热容的敏感性随深度增大而变弱。孔隙度在0.15~0.40 m时敏感性最强,热传导系数在0.40~0.70 m时敏感性最强,河床体积热容在0.05~0.15 m时敏感性最强。不同参数在同深度的敏感性强弱总体为热传导系数 > 河床体积热容 > 孔隙度 > 水体积热容 > 热弥散。
Abstract: Due to the fact that the thermal tracer method to calculate the river hydroheic flux can not over-come the temperature data to estimate some of the shortcomings of subsurface exchange, the spatial heterogeneity of the riverbed and the selection of some thermal parameters of the river bed have a great influence on the calculation results of the hydroheic flux. In order to improve the accuracy of the calculation results, it is important to calculate the sensitivity of the parameters. Using the VFLUX toolbox 2.0.0, the porosity, the heat capacity of the bed skeleton, the volumetric heat capacity of water, the dispersivity, the effective heat transfer coefficient into the typical value and the upper and lower boundary values were analyzed by the calculated change rate of the amplitude ratio method. The results show that when the depth of the bed is 0.05 - 0.70 m, the hydroheic flux increases with the porosity and the heat capacity of the bed skeleton, and decreases with the increase of volumetric heat capacity of water. It does not affect the hydroheic flux results when the dispersivity in the 0 - 0.01 value. The effective heat transfer coefficient on the hydroheic flux varies with depth. The sensitivity of the same parameter at different depths is also different: the volumetric heat capacity of water decreases with depth. When the porosity is 0.15 - 0.40 m, the sensitivity is the strongest, the effective heat transfer coefficient is 0.40 - 0.70 m, the sensitivity is the strongest, and the volumetric heat capacity of the bed skeleton is the strongest at 0.05 - 0.15 m. In short, the sensitivity of different parameters at the same depth is the effective heat transfer coefficient > the volumetric heat capacity of the bed skeleton > the porosity > the volumetric heat capacity of water > the dispersivity.
文章引用:李英豪, 霍艾迪, 冯玮, 陈星宇, 杜璨, 申航. 基于热示踪法河流潜流带潜流通量计算参数敏感性分析——以渭河西安段为例[J]. 渗流力学进展, 2017, 7(1): 1-11. https://doi.org/10.12677/APF.2017.71001

参考文献

[1] 金光球, 李凌. 河流中潜流交换研究进展[J]. 水科学进展, 2008, 19(2): 285-293.
[2] Cranswick, R.H. Cook, P.G. and Lamontagne, S. (2014) Hyporheic Zone Exchange Fluxes and Residence times İnferred from Riverbed Temperature and Radon Data. Journal of Hydrology, 519, 1870-1991.
[3] Young, P.C., Pedregal, D.J. and Tych, W. (1999) Dynamic Harmonic Regression (DHR). Journal of Forecasting, 18, 369-394.
https://doi.org/10.1002/(SICI)1099-131X(199911)18:6<369::AID-FOR748>3.0.CO;2-K
[4] Hatch, C.E., Fisher, A.T., Revenaugh, J.S., et al. (2006) Quantifying Surface Water-Groundwater Interactions Using Time Series Analysis of Streambed Thermal Records: Method Development. Water Resources Research, 42, 2405- 2411.
https://doi.org/10.1029/2005WR004787
[5] Gordon, R.P., Lautz, L.K., Briggs, M.A., et al. (2012) Automated Calculation of Vertical Pore-Water Flux from Field Temperature Time Series Using the VFLUX Method and Computer Program. Journal of Hydrology, 420-421, 142-158.
https://doi.org/10.1016/j.jhydrol.2011.11.053
[6] Keery, J., Binley, A., Crook, N., et al. (2007) Temporal and Spatial Variability of Groundwater Surface Water Fluxes: Development and Application of an Analytical Method Using Temperature Time Series. Journal of Hydrology, 336, 1-16.
https://doi.org/10.1016/j.jhydrol.2006.12.003
[7] Mccallum, A.M., Andersen, M.S., Rau, G.C., et al. (2012) A 1-D Analytical Method for Estimating Surface Water-Groundwater Interactions and Effective Thermal Diffusivity Using Temperature Time Series. Water Resources Research, 48, 131-141.
https://doi.org/10.1029/2012WR012007
[8] Luce, C.H., Daniele, T., Frank, G., et al. (2013) Solutions for the Diurnally Forced Advection-Diffusion Equation to Estimate Bulk Fluid Velocity and Diffusivity in Streambeds from Temperature Time Series. Water Resources Research, 49, 488-506.
https://doi.org/10.1029/2012wr012380
[9] 张佳. 基于温度示踪的潜流交换动态变化研究[D]: [硕士学位论文]. 西安: 长安大学, 2016.
[10] Hatch, C.E., Fisher, A.T., Revenaugh, J.S., Constantz, J. and Ruehl, C. (2006) Quantifying Surface Water-Groundwater Interactions Using Time Series Analysis of Streambed Thermal Records: Method Development. Water Resources Research, 42, 1-14.
https://doi.org/10.1029/2005WR004787
[11] Hatch, C.E., Fisher, A.T., Revenaugh, J.S., Constantz, J. and Ruehl, C. (2006) Quantifying Surface Water—Ground- water Interactions Using Time Series Analysis of Streambed Thermal Records: Method Development. Water Resources Research, 42.
https://doi.org/10.1029/2005WR004787
[12] Lapham, W.W. (1989) Use of Temperature Profiles beneath Streams to Determine Rates of Vertical Ground-Water Flow and Vertical Hydraulic Conductivity. Department of the Interior, US Geological Survey, USGPO, Books and Open-File Reports Section, US Geological Survey, Reston, 35. http://pubs.er.usgs.gov/publication/wsp2337
[13] Milan, V. and Andjelko, S. (1992) Determination of Hydraulic Conductivity of Porous Media from Grain-Size Composition. Water Resources Publications. Littleton, 83 p.
[14] Vukovic, M. and Soro, A. (1992) Determination of Hydraulic Conductivity of Porous Media from Grain-Size Composition.
[15] Holtz, R.D. and Kovacs, W.D. (1981) An Introduction to Geotechnical Engineering.
[16] Goto, S., Yamano, M. and Kinoshita, M. (2005) Thermal Response of Sediment with Vertical Fluid Flow to Periodic Temperature Variation at the Surface. Journal of Geophysical Research: Solid Earth, 110, (B1):B01106.01101- B01106. 01111.
[17] Gordon, R.P., Lautz, L.K., Briggs, M.A. and McKenzie, J.M. (2012) Automated Calculation of Vertical Pore-Water Flux from Field Temperature Time Series Using the VFLUX Method and Computer Program. Journal of Hydrology, 420, 142-158.
https://doi.org/10.1016/j.jhydrol.2011.11.053
[18] 鲁程鹏, 张颖, 朱静思, 王冠, 何晓宇, 张亚龙, 何佳煜, 沈红霞. 基于热追踪方法的河流横断面潜流交换时空非均质特征研究[J]. 第四纪研究, 2014, 34(5): 1094-1105.
[19] David, A.S. and Jim, C. (2003) Heat as a Tool for Studying the Movement of Ground Water near Streams. Department of the Interior, US Geological Survey, 1-96. http://pubs.er.usgs.gov/publication/cir1260
[20] 霍艾迪, 张广军, 赵君, 曹馨升. 基于MODIS数据的沙漠化地区地下水位遥感监测模型的建立——以毛乌素沙地为例[J]. 干旱地区农业研究, 2010(6): 196-200.
[21] 田凯, 李小青, 康相武, 霍艾迪. 基于MODIS数据研究黄河中上游区域地下水对地表植被影响的方法[J]. 高技术通讯, 2009(11): 1201-1205.
[22] Huo, A., Chen, X., Li, H., Hou, M. and Hou, X. (2011) Development and Testing of a Remote Sensing-Based Model for Estimating Groundwater Levels in Aeolian Desert Areas of China. Canadian Journal of Soil Science, 91, 29-37.
https://doi.org/10.4141/cjss10044
[23] Huo, A.-D., Li, J.-G., Jiang, G.-Z. and Yang, Y. (2013) Temporal and Spatial Variation of Surface Evapotranspiration Based on Remote Sensing in Golmud Region, China. Applied Mathematics & Information Sciences, 7, 519-524.
https://doi.org/10.12785/amis/072L21
[24] Huo, A., Peng, J., Chen, X., Deng, L., Wang, G. and Cheng, Y. (2016) Groundwater Storage and Depletion Trends in the Loess Areas of China. Environmental Earth Sciences, 75, 1-11.
https://doi.org/10.1007/s12665-016-5951-4
[25] Huo, A.-D., Dang, J., Song, J.-X., Chen, X.H. and Mao, H.-R. (2016) Simulation Modeling for Water Governance in Basins Based on Surface Water and Groundwater. Agricultural Water Management, 174, 22-29.
https://doi.org/10.1016/j.agwat.2016.02.027