低雷诺数下翼型绕流的LBM数值模拟
Numerical Simulation of Flow around Airfoil with Low Reynolds Number by Lattice Boltzmann Method
DOI: 10.12677/JAST.2017.53013, PDF, HTML, XML, 下载: 1,794  浏览: 5,056 
作者: 冯欢欢, 邹 森, 赵 广:南昌航空大学飞行器工程学院,江西 南昌
关键词: LBM方法D2Q9模型翼型低雷诺数LBM Method D2Q9 Model Airfoil Low Reynolds Number
摘要: Lattice Boltzmann Method (LBM)是一种近年来发展的基于分子动理论的数值方法,它具有计算简单、边界易于处理的特点。本文基于采用D2Q9模型的LBM方法对NACA0012翼型进行了数值模拟与分析,数值结果表明:对于简单翼型的低雷诺数、非定常湍流流场,LBM方法的数值结果与CFL3D参考值可以很好的吻合。因而,该方法对于低雷诺数下简单翼型流场计算是一种有效的计算手段。
Abstract: Lattice Boltzmann Method (LBM) is a numerical method based on molecular dynamics theory de-veloped in recent years. It has the characteristics of simple calculation and easy boundary treat-ment. In this paper, the flow with low Reynolds number for NACA0012 airfoil were analyzed and simulated based on LES method with D2Q9 model. The numerical results show that the numerical results of the LBM method fairly agree with the reference value of CFL3D for the low Reynolds number and the unsteady turbulent flow field of the simple airfoil. Thus, this method is effective for calculating the wing flow field at low Reynolds number.
文章引用:冯欢欢, 邹森, 赵广. 低雷诺数下翼型绕流的LBM数值模拟[J]. 国际航空航天科学, 2017, 5(3): 119-127. https://doi.org/10.12677/JAST.2017.53013

参考文献

[1] Chen, S. and Doolen, G.D. (1998) Lattice Boltzmann Method for Fluid Flows. Annual Review of Fluid Mechanics, 130, 327-358.
https://doi.org/10.1146/annurev.fluid.30.1.329
[2] 李红群, 史冬岩, 王志凯, Wasim M.K. Helal. 不同壁面绕流特性的格子Boltzmann 模拟研究[J]. 计算力学学报, 2017(2): 219-225.
[3] Dorschner, B., Frapolli, N., Chikatamarla, S.S. and Karlin, I.V. (2016) Grid Refinement for Entropic Lattice Boltzmann Models. Physical Review E, 94, Article ID: 053311.
https://doi.org/10.1103/physreve.94.053311
[4] 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009: 2-12.
[5] 王龙, 宋文萍. 翼型绕流的LBM大涡模拟研究[J]. 西北工业大学学报, 2010, 28(3): 448-452.
[6] 蒋荣勤. 高雷诺数下格子Boltzmann方法的应用研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2008.
[7] He, X.Y. and Li, S.L. (1992) A Priori Derivation of the Lattice Boltzmann Equation. Physical Review E, 55, 6333.
https://doi.org/10.1103/PhysRevE.55.R6333
[8] Higuera, F.J. and Jimenez, J. (1989) Boltzmann Approach to Lattice Gas Simulation. European Physics Letter, 9, 659- 671.
https://doi.org/10.1209/0295-5075/9/7/009
[9] Higuera, F., Succi, S. and Benzi, R. (1989) Lattice Gas Dynamics with Enhanced Collisions. European Physics Letter, 9, 339-352.
https://doi.org/10.1209/0295-5075/9/4/008
[10] Chen, S., Chen, H.D., Martinez, D., et al. (1992) Lattice Boltzmann Method for Simulation of Magneto Hydrodynamics. Physical Review Letter, 17, 469-494.
[11] Qian, Y.H., Humieres, D. and Lallemand, P. (1992) Lattice BGK models for Navier-Stokes Equation. European Physics Letter, 17, 477-491.
https://doi.org/10.1209/0295-5075/17/6/001
[12] Bhatnagar, P.L., Gross, E.P. and Krook, M. (1954) A Model for Collision Processes in Gases. I: Small Amplitude Processes in Charged and Neutral One-Dimensional Systems. Physical Review Letter, 94, 509-526.
[13] Verberg, R. and Ladd, A.J.C. (2000) Lattice-Boltzmann Model with Sub-Grid-Scal Boundary Conditions. Physical Review Letters, 84, 2146-5152.
https://doi.org/10.1103/PhysRevLett.84.2148
[14] Rohde, M., Kandhai, D., Derksen, J.J., et al. (2002) Improved Bounce-Back Methods for No-Slip Walls in Lattice-Boltzmann Shemes. Physical Review E, 65, Article ID: 056701.
[15] Rohde, M., Kandhai, D., Derksen, J.J., et al. (2003) Improved Bounce-Back Methods for No-Slip Walls in Lat-tice-Boltzmann Schemes: Theory and Simulation. Physical Review E, 67, Article ID: 066703.
https://doi.org/10.1103/PhysRevE.67.066703
[16] Feng, Z.G. and Michaelides, E.E. (2004) The Immersed Boundary-Lattice Boltzmann Method for Solving Fluid-Particles Interaction Problems. Journal of Computational Physics, 195, 602-631.
[17] Feng, Z.G. and Michaelides, E.E. (2005) Proteus: A Direct Forcing Method in the Simulation of Particulate Flows. Journal of Computation Physics, 202, 20-51.
https://doi.org/10.1016/j.jcp.2004.06.020
[18] Niu, X.D., Shu, C., Chew, Y.T., et al. (2006) A Momentum Exchange-Based Immersed Boundary-Lattice Boltzmann Method Foy Simulating Incompressible Viscous Flows. Physics Letter A, 354, 172-187.
[19] 宋文萍, 余雷, 韩忠华. 飞机机体气动噪声计算方法综述[J]. 航空工程进展, 2010(2): 121-134.
[20] Lockard, D.P., Luo, L.S., Milder, S.D. and Singer, B.A. (2002) Evaluation of Power Flow for Aerodynamic Applications. Journal of Statistical Physics, 107, 423-478.
https://doi.org/10.1023/A:1014539411062
[21] Somers, D. (2005) Design and Experimental Results for the s825 Airfoil. Technical Report. National Renewable Energy Laboratory, Golden.