脑胶质瘤靶向脂质体的制备和表征
Preparation and Characterization of Glioma Targeted Liposomes
DOI: 10.12677/HJBM.2017.73008, PDF, HTML, XML, 下载: 1,773  浏览: 3,654  国家自然科学基金支持
作者: 韩 伟, 胡 傲, 姚大靖, 尹光福*:四川大学材料科学与工程学院,四川 成都
关键词: 脑胶质瘤脂质体Angiopep-2Glioma Liposomes Angiopep-2
摘要: 脑胶质瘤是最常见的颅内恶性肿瘤,能特异性靶向脑胶质瘤细胞的药物载体是脑胶质瘤安全高效治疗的关键。本研究制备了Angiopep-2和TAT双配体修饰的脑胶质瘤靶向脂质体(Ang-TAT-LIP),通过正交试验探究脂质体的优化制备条件,并用核磁共振氢谱表征多肽修饰的效果,通过纳米粒度仪和TEM电镜表征脂质体的粒径分布和形貌,并表征脂质体的血清稳定性,最后用体外细胞摄取实验,研究脂质体靶向进入细胞的效果。具体结论如下:1H-NMR证实DSPE-PEG2000-Ang/TAT的成功合成;脂质体的优化制备条件如下,50˚C水浴、旋蒸转速为120 rpm、探头超声16 min、并依次过0.22 μm及0.10 μm的滤膜;脂质体的平均粒径约为110 nm,径分布均匀、且粒形为圆球状,分散性和血清稳定性良好;Ang-TAT-LIP脂质体具有亲合–穿膜协同效应,可靶向脑胶质瘤细胞,进而被细胞摄取。综上所述,Ang-TAT-LIP是一种具有应用前景的脑胶质瘤靶向药物载体材料。
Abstract: Glioma was one of the most common encephaloma. The development of targeted drug release system was critical for the safe and efficient treatment of glioma. Angiopep-2 and TAT dual-modified and glioma-targeted liposomes were prepared (Ang-TAT-LIP). Orthogonal tests were used to study the optimum preparation conditions of liposomes. 1H-NMR spectra was utilized to verify the modification effect of peptides. Particle sizer and TEM were used to analyze the size distribution and morphology, and characterized the serum stability of liposomes. Finally, the in-vitrocell uptake experiment was used to study the effect of liposome targeting into cells. The main results were summarized as follows: DSPE-PEG2000-Ang/TAT was confirmed successfully synthesized by 1H-NMR spectra. The optimum conditions combination was below: 50˚C water bath, rotate speed 120 rpm, ultrasonic time 16 min, filters 0.22 μm and 0.10 μm. The liposomes were about 110 nm in diameter, with uniform particle size, spherical shape, good dispersity and fine serum stability. In conclusion, the Ang-TAT-LIP was a potential drugs carrier material of glioma targeting.
文章引用:韩伟, 胡傲, 姚大靖, 尹光福. 脑胶质瘤靶向脂质体的制备和表征[J]. 生物医学, 2017, 7(3): 46-53. https://doi.org/10.12677/HJBM.2017.73008

参考文献

[1] Omuro, A. and Deangelis, L.M. (2013) Glioblastoma and Other Malignant Gliomas: A Clinical Review. Journal of the American Medical Association, 310, 1842-1850.
https://doi.org/10.1001/jama.2013.280319
[2] Hamza, M.A. and Gilbert, M. (2014) Targeted Therapy in Gliomas. Current Oncology Reports, 16, 1-14.
https://doi.org/10.1007/s11912-014-0379-z
[3] Yoo, J.W., Chambers, E. and Mitragotri, S. (2010) Factors that Control the Circulation Time of Nanoparticles in Blood: Challenges, Solutions and Future Prospects. Current Pharmaceutical Design, 16, 2298-2307.
https://doi.org/10.2174/138161210791920496
[4] Wei, X., Zhan, C., Chen, X., Hou, J., Cao, X. and Lu, W. (2014) Re-tro-Inverso Isomer of Angiopep-2: A Stable D-Peptide Ligand Inspires Brain-Targeted Drug Delivery. Molecular Pharmaceutics, 11, 3261-3268.
https://doi.org/10.1021/mp500086e
[5] Shen, J., Zhan, C., Xie, C., Meng, Q., Gu, B., Li, C., et al. (2011) Poly (Ethylene Glycol)-Block-Poly (d,l-Lactide Acid) Micelles Anchored with Angiopep-2 for Brain-Targeting Delivery. Journal of Drug Targeting, 19, 197-203.
https://doi.org/10.3109/1061186X.2010.483517
[6] Ke, W., Shao, K., Huang, R., Han, L., Liu, Y. and Li, J. (2009) Gene Delivery Targeted to the Brain Using an Angiopep-Conjugated Polyethyleneglycol-Modified Polyamidoamine Dendrimer. Biomaterials, 30, 6976-6985.
https://doi.org/10.1016/j.biomaterials.2009.08.049
[7] Zong, T., Mei, L., Gao, H., Shi, K., Chen, J., Wang, Y., et al. (2014) Enhanced Glioma Targeting and Penetration by Dual-Targeting Liposome Co-Modified with T7 and TAT. Journal of Pharmaceutical Sciences, 103, 3891-3901.
https://doi.org/10.1002/jps.24186
[8] Xin, H., Jiang, X., Gu, J., Sha, X., Chen, L., Law, K., et al. (2011) Angiopep-Conjugated Poly (Ethylene Glycol)-Co-Poly (Ε-Caprolactone) Nanoparticles as Dual-Targeting Drug Delivery System for Brain Glioma. Biomaterials, 32, 4293-4305.
https://doi.org/10.1016/j.biomaterials.2011.02.044
[9] Yang, Z.Z., Li, J.Q., Wang, Z.Z., Dong, D.W. and Qi, X.R. (2014) Tumor-Targeting Dual Peptides-Modified Cationic Liposomes for Delivery of siRNA and Docetaxel to Gliomas. Biomaterials, 35, 5226-5239.
https://doi.org/10.1016/j.biomaterials.2014.03.017
[10] Song, S., Liu, D., Peng, J., Sun, Y., Li, Z., Gu, J.R., et al. (2008) Peptide Ligand-Mediated Liposome Distribution and Targeting to EGFR Expressing Tumor In Vivo. International Journal of Pharmaceutics, 363, 155-161.
https://doi.org/10.1016/j.ijpharm.2008.07.012
[11] Maeda, N., Takeuchi, Y., Takada, M., Sadzuka, Y., Namba, Y. and Oku, N. (2004) Anti-Neovascular Therapy by Use of Tumor Neovasculature-Targeted Long-Circulating Liposome. Journal of Controlled Release, 100, 41-52.
https://doi.org/10.1016/j.jconrel.2004.07.033
[12] Zhu, J. and Chen, W. (2014) Energy and Energy Performance Analysis of a Marine Rotary Desiccant Air-Conditioning System Based on Orthogonal Experiment. Energy, 77, 953-962.
https://doi.org/10.1016/j.energy.2014.10.014
[13] Sharma, G., Modgil, A., Layek, B., Arora, K., Sun, C., Law, B., et al. (2013) Cell Penetrating Peptide Tethered Bi-Ligand Liposomes for Delivery to Brain In Vivo: Biodistribution and Transfection. Journal of Controlled Release, 167, 1-10.
https://doi.org/10.1016/j.jconrel.2013.01.016
[14] Kibria, G., Hatakeyama, H., Ohga, N., Hida, K. and Harashima, H. (2011) Dual-Ligand Modification of PEGylated Liposomes Shows Better Cell Selectivity and Efficient Gene Delivery. Journal of Controlled Release, 153, 141-148.
https://doi.org/10.1016/j.jconrel.2011.03.012