新型二维层状材料MXene的制备方法研究
Synthesis of a Novel Two Dimensional Material: Mxene
DOI: 10.12677/MS.2017.74061, PDF, HTML, XML, 下载: 3,320  浏览: 6,491  科研立项经费支持
作者: 马亚楠, 张传坤, 罗 啸, 李 伟:湖北汽车工业学院理学院,湖北 十堰
关键词: 二维材料石墨烯MAXMXene2D Materials Graphene MAX MXene
摘要: 新型二维层状材料Mxenes (过渡金属碳化物或氮化物)因其具有与石墨烯类似的结构和丰富的物理化学性质,在储能、催化、光电、生物等领域具有巨大的潜在应用价值。但至今为止,关于MXenes的制备方法并不成熟。本文分别采用HF腐蚀液选择性刻蚀的方法制备了MXenes,通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)等表征手段研究了HF的浓度、反应时间、反应温度等工艺因素对MXenes形貌和结构的影响。研究结果表明,用浓度50 wt%的HF在50℃下反应24 h,得到的层状MXenes最佳,将有助于进一步拓宽MXenes在多领域的应用。
Abstract: The novel two dimensional material MXenes (early transition metal carbides and nitrides) exhibit rich physical and chemical properties like graphene, thus show a wide application in energy storage, catalyst, photoelectricity, biology, etc. But until now, the method fabricating MXenes is not mature. In this paper, we used HF to selectively etch out a layer in MAX phase for synthesizing MXene. Then with the help of the scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), it is found that the HF concentration and system temperature can severely influence the morphology and structure of the obtained MXene. The results show that the perfect layered MXene can be synthesized used 50 wt% HF under 50℃ for 24 h, which will broaden the potential application of MXenes.
文章引用:马亚楠, 张传坤, 罗啸, 李伟. 新型二维层状材料MXene的制备方法研究[J]. 材料科学, 2017, 7(4): 463-468. https://doi.org/10.12677/MS.2017.74061

参考文献

[1] 彭旭, 李典奇, 彭晶, 彭乐乐, 吴长征, 谢毅. 二维石墨烯和准二维类石墨烯在全固态柔性超级电容器中的应用[J]. 科学通报, 2013(z2): 2886-2894.
[2] 吴洪鹏. 石墨烯的制备及在超级电容器中的应用[D]: [博士学位论文]. 北京: 北京交通大学, 2012.
[3] 邓晓梅. 石墨烯基锂离子电池负极材料的制备与性能研究[D]: [硕士学位论文]. 太原: 太原理工大学, 2015.
[4] Naguib, M., Kurtoglu, M., Presser, V., et al. (2011) Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Advanced Materials, 23, 4248-4253.
https://doi.org/10.1002/adma.201102306
[5] Naguib, M., Mochalin, V.N., Barsoum, M.W., et al. (2014) MXenes: A New Family of Two-Dimensional Materials. Advanced Materials, 26, 992-1005.
https://doi.org/10.1002/adma.201304138
[6] Hoffman, E.N., Vinson, D.W., Sindelar, R.L., et al. (2012) MAX Phase Carbides and Nitrides: Properties for Future Nuclear Powerplant in Core Applications and Neutron Transmutation Analysis. Nuclear Engi-neering and Design, 244, 17-24.
https://doi.org/10.1016/j.nucengdes.2011.12.009
[7] 薛茂权. MAX相及其氢氟酸腐蚀产物制备与摩擦学行为研究[D]: [博士学位论文]. 镇江: 江苏大学, 2014.
[8] Anasori, B., Lukatskaya, M.R. and Gogotsi, Y. (2017) 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nature Reviews Materials, 2, Article ID: 16098.
https://doi.org/10.1038/natrevmats.2016.98
[9] Li, R., Zhang, L., Shi, L., et al. (2017) MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. ACS Nano, 11, 3752-3759.
https://doi.org/10.1021/acsnano.6b08415
[10] Xuan, J., Wang, Z., Chen, Y., et al. (2016) Organic-Base-Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. Angewandte Chemie, 128, 14789-14794.
https://doi.org/10.1002/ange.201606643
[11] Peng, Q., Guo, J., Zhang, Q., et al. (2014) Unique lead Adsorption Behavior of Activated Hydroxyl Group in Two-Dimensional Titanium Carbide. Journal of the American Chemical Society, 136, 4113-4116.
https://doi.org/10.1021/ja500506k
[12] Ghidiu, M., Lukatskaya, M.R., Zhao, M.Q., et al. (2014) Conductive Two-Dimensional Titanium Carbide/Clay/with High Volumetric Capacitance. Nature, 516, 78-81.
https://doi.org/10.1038/nature13970
[13] Urbankowski, P., Anasori, B., Makaryan, T., et al. (2016) Synthesis of Two-Dimensional Titanium Nitride Ti4N3(MXene). Nanoscale, 8, 11385-11391.
https://doi.org/10.1039/C6NR02253G
[14] Xu, C., Wang, L., Liu, Z., et al. (2015) Large-Area High-Quality 2D Ultrathin Mo2C Superconducting Crystals. Nature Materials, 14, 1135-1141.
https://doi.org/10.1038/nmat4374
[15] Srivastava, P., Mishra, A., Mizuseki, H., et al. (2016) Mechanistic Insight into the Chemical Exfoliation and Functionalization of Ti3C2 MXene. ACS Applied Materials & Interfaces, 8, 24256-24264.
https://doi.org/10.1021/acsami.6b08413