基于霍顿下渗能力曲线的流域产汇流计算
Runoff Yield and Conflux Model Based on Horton Infiltration Capacity Curve
DOI: 10.12677/JWRR.2017.64038, PDF, HTML, XML, 下载: 1,763  浏览: 3,947  科研立项经费支持
作者: 金双彦, 蒋昕晖:黄河水利委员会水文局,河南 郑州
关键词: 下渗能力产汇流模型马斯京根法洪水模拟佳芦河Infiltration Capacity Runoff Yield and Conflux Model Muskingum Method Flood Simulation Jialuhe River
摘要: 选择黄河中游山陕区间右岸的一级支流佳芦河为研究对象,采用入黄水文站申家湾1978~2014年的洪水资料,以霍顿下渗能力曲线为基础,结合ArcGIS,分析下渗能力,建立产汇流模型,并进行历史典型洪水模拟。用流域实测降雨量、径流量及前期影响雨量等资料,分析佳芦河下渗能力,建立f~W0~Ft关系,计算出佳芦河流域稳定下渗率为3.1 mm/h。产汇流模块由蒸散发、产流、坡面汇流和河道汇流共四部分组成,分别采用瞬时单位线法和马斯京根法研究坡面汇流和河道汇流,求出产汇流参数。用率定的产汇流参数对典型洪水进行模拟,模拟效果较好,平均洪峰相对误差约为8.3%,洪峰误差均在预报允许范围之内,平均峰现误差约为0.05小时,平均确定性系数为0.77。
Abstract: Flood data from 1978 to 2014 at Shenjiawan hydrology station, Jialuhe basin located in the Shanxi-Shaanxi Region of the middle Yellow River, are selected in this study. Based on the Horton infiltration capacity curve and ArcGIS, the stable infiltration rate is calculated, and the runoff yield and conflux model is established to simulate history floods. The observed rainfall, runoff and antecedent precipitation are used to analyze the infiltration capacity, and the stable infiltration rate is 3.1 mm/h through the relation of f~W0~Ft. The watershed runoff yield and conflux model is composed of four parts, among which, the overland flow module adopts instantaneous unit method and the river flow module adopts Muskingum flow algorithm. The history flood simulation results are good: the average error of peak time is about 0.05 hour; the error of peak discharge is in the forecasting allowable range, and the deterministic coefficient is 0.77.
文章引用:金双彦, 蒋昕晖. 基于霍顿下渗能力曲线的流域产汇流计算[J]. 水资源研究, 2017, 6(4): 317-323. https://doi.org/10.12677/JWRR.2017.64038

参考文献

[1] 李英明, 潘军峰, 主编. 山西河流[M]. 北京: 科学出版社, 2004: 183. LI Yingming, PAN Junfeng. Shanxi river. Beijing: Science Press, 2004: 183. (in Chinese)
[2] 霍庭秀, 罗虹, 等. 黄河中游河龙区间水沙特性分析[J]. 水利技术监督, 2009(5): 13-15. HUO Tingxiu, LUO Hong, et al. Characteristics of water and sediment in the Hekouzhen-Longmen region of the middle Yellow River. Water Conservancy Technical Supervision, 2009(5): 13-15. (in Chinese)
[3] 芮孝芳, 宫兴龙, 张超, 等. 流域产流分析及计算[J]. 水利发电学报, 2009, 28(6): 146-150. RUI Xiaofang, GONG Xinglong, ZHANG Chao, et al. Formation and calculation of watershed runoff yield. Journal of Hydro-electric Engineering, 2009, 28(6): 146-150. (in Chinese)
[4] 包为民, 主编. 水文预报(第三版) [M]. 北京: 中国水利水电出版社, 2006: 29-31. BAO Weimin. Hydrology forecast. Beijing: China Water Conservancy and Hydropower Publishing House, 2006: 29-31. (in Chinese)
[5] 庄一鸰, 林三益, 合编. 水文预报[M]. 北京: 中国水利电力出版社, 1986: 86-88. ZHUANG Yiling, LIN Sanyi. Hydrology forecast. Beijing: China Water Conservancy and Hydropower Publishing House, 1986: 86-88. (in Chinese)
[6] 黄膺翰, 周青. 基于霍顿下渗能力曲线的流域产流计算研究[J]. 人民长江, 2014, 45(5): 16-18. HUANG Yinghan, ZHOU Qing. Calculation of basin runoff yield based on Horton infiltration capacity curve. Yangtze River, 2014, 45(5): 16-18. (in Chinese)
[7] 林凯荣, 郭生练, 张文华. 基于霍顿下渗能力曲线的流量过程线连续分割方法研究[J]. 水文, 2008, 28(1): 10-14. LIN Kairong, GUO Shenglian, ZHANG Wenhua. A continuous hydrograph separation method based on Horton infiltration capacity curve. Hydrology, 2008, 28(1): 10-14. (in Chinese)
[8] 赵人俊, 王佩兰. 霍顿与菲利蒲下渗公式对子洲径流站资料的拟合[J]. 人民黄河,1982(1): 1-8. ZHAO Renjun, WANG Peilan. Fitting by the method of Horton and Philip infiltration formula of Zizhou runoff station data. Yellow River, 1982(1): 1-8. (in Chinese)
[9] 芮孝芳, 著. 水文学原理[M]. 北京: 中国水利水电出版社, 2004: 267-300. RUI Xiaofang. Principles of hydrology. Beijing: China Water Conservancy and Hydropower Publishing House, 2004: 267-300. (in Chinese)
[10] 芮孝芳, 编著. 径流形成原理[M]. 南京: 河海大学出版社, 1991: 122-129. RUI Xiaofang. Runoff formation principle. Nanjing: Hohai University Press, 1991: 122-129. (in Chinese)