从RFCO3一次浸液中分离铁的工艺研究
Studies on the Technique of Separation of Iron from a Leaching Solution RFCO3
DOI: 10.12677/MS.2017.74064, PDF, HTML, XML, 下载: 1,374  浏览: 4,072  科研立项经费支持
作者: 秦少龙, 张万明:西昌学院,四川 西昌
关键词: RFCO3一次浸液分离RFCO3 Primary Infusion Iron Isolated
摘要: 本试验以RFCO3经氧化焙烧后用HCl浸后的一次浸液为原料,在各种不同的条件下,用N235和TBP两种萃取剂,研究其对稀土中杂质元素铁等非稀土杂质的分离效果。试验结果表明:N235的萃取效果要比TBP的萃取效果更好,在不同的萃取剂浓度和不同酸度的条件下N235萃取稀土中铁效果可达90%以上,其最佳效果为99.56%;而在相同浓度N235中分离铁的最佳酸度为c(H+) = 2.0 mol/L左右。但是从经济角度考虑,N235的成本要比TBP高,在工业上TBP要比N235应用更为广泛,故分离铁的最佳工艺,应该选用浓度为40%的TBP来萃取酸度为2.0 mol/L左右的浸液中的铁。
Abstract: In this study, RFCO3 was oxidized and roasted, and then soaked with HCl for only once, and the immersion liquid was as a raw material. And the separation of non-rare earth impurities such as impurity elements in rare earth was studied under various conditions with two different extraction agents N235 and TBP. The results showed that the extraction effect of N235 was better than that of TBP, and the effect of the extraction of rare earth iron of N235 was more than 90% under different extraction conditions and different acidity. The best effect was 99.56%. The optimum acidity of separation iron in the same concentration of N235 is about c (H+) = 2.0 mol/L. However, from the economic point of view, N235 costs higher than the TBP, and the TBP is applied more widely than N235 in industry, so the best way to separate iron should be the concentration of TBP was 40% to extract the iron in the infusion which the acidity was about 2.0 mol/L.
文章引用:秦少龙, 张万明. 从RFCO3一次浸液中分离铁的工艺研究[J]. 材料科学, 2017, 7(4): 482-491. https://doi.org/10.12677/MS.2017.74064

参考文献

[1] 徐光宪, 高松, 等. 稀土萃取分离工艺研究新进展[J]. 中国稀土学报, 1993, 11(3): 193-198.
[2] 王晴, 王帅, 周纯洁. 稀土提取与分离技术研究进展[J]. 应用化工, 2015(2): 336-339.
[3] 池汝安, 王淀佐. 稀土选矿与技术提取[M]. 北京: 科学出版社, 1996.
[4] Tilley, G.L. and Doyle, W.E. (1990) Recovery of Lanthanides. U.S. Patent No. 4,973,455.
[5] 朱国才, 田君, 等. 氟碳铈矿提取稀土的绿色化学进展[J]. 化学通报, 2000, 63(12): 6-11.
[6] Kruesi, P.R. and Duker, G. (1965) Production of Rare Earth Chloride from Bastnasite. International Journal of Metals, 17, 847-849.
[7] 刘洪, 贾建华, 敖波. 攀西稀土矿泥中稀土回收利用研究进展[J]. 西昌学院报自然科学版, 2006, 20(2): 39-40.
[8] 池汝安, 徐景明, 何培炯, 等. 川西某氟碳稀土矿矿泥浸取稀土研究[J]. 有色金属: 选矿部分, 1995(1): 1-4.
[9] 袁芳沁, 吴克明, 丁倩倩, 柯兴. 湿法炼锌除铁工艺的现状与展望[J]. 矿产综合利用, 2011, 4(2): 30-32.
[10] 张秀莉, 万雄. N235–环烷酸萃取分离稀土中的铁[J]. 过程工程学报, 1999(20): 25-28.
[11] 田君, 池汝安, 朱国才, 等. N235萃取法分离稀土矿泥氯化浸出液中的铁[J]. 有色金属, 2000, 52(2): 57-60.
[12] 张魁芳, 刘志强, 曹洪杨, 邱显扬. 用N235从富铁高酸度硫酸浸出液中萃取铁[J]. 中国有色金属学报, 2015(5): 1370-1377.
[13] 姜平国, 吴筱, 廖春发, 焦芸芬, 夏李斌. 用N235从赤泥浸出液中提取铁的工艺研究[J]. 江西理工大学学报, 2009, 30(1): 14-16.
[14] 马保中, 王丽娜, 齐涛, 等. 磷酸三丁脂萃取分离钛铁矿亚熔盐反应产物酸解液中Fe3﹢及金红石型TiO2的制备[J].过程工程学报, 2008, 8(3): 504-510.
[15] 田君, 池汝安, 朱国才, 等. 攀西稀土矿黑色风化矿泥氯化焙砂柱浸稀土研究[J]. 稀土, 2000, 21(4): 9-12.