三峡蓄放条件下御临河口水动力特性研究
Hydrodynamic Characteristics of Tributary River Estuary under TGR Water Inpouring and Drainage Conditions
DOI: 10.12677/JWRR.2017.64043, PDF, HTML, XML, 下载: 1,577  浏览: 3,036  国家自然科学基金支持
作者: 龙明梅:重庆市北碚区生态环境监测站,重庆;艾海男, 刘步云, 何 强, 孙兴福, 李 宏:重庆大学三峡库区生态环境教育部重点实验室,重庆
关键词: 三峡水库蓄放过程御临河口水动力特性Three Gorges Reservoir Water Inpouring and Drainage Yulin Estuary Hydrodynamic Characteristics
摘要: 随着三峡水库的周期性运行,库区支流河口水动力特性发生相应变化,水体稀释自净能力减弱,水环境容量降低,进而影响支流水质和库区饮用水安全。研究三峡工程蓄、放条件下支流河口的水动力特性,提出改善水动力条件的有效措施,对于改善库区支流水质状况、保证供水安全具有重要作用。本文选择三峡库区一条支流-御临河为研究对象,模拟其河口在蓄、放周期内的水动力特性变化,分析了水动力学演变规律。研究结果表明,在蓄水期,河口表层的平均速率为0.026 m/s,底层的平均速率为0.027 m/s,整体流速较慢,影响污染物扩散,需加强面源的控制,防止营养物质蓄积导致次年气温升高产生水华现象;在放水期,河口表层的平均速率为0.21 m/s,底层的平均速率为0.034 m/s,虽然表层流速较大,但底层流速与蓄水期相差不大,有可能导致营养盐、重金属在底层蓄积。
Abstract: As Three Gorges Reservoir changes seasonally, hydrodynamic characteristics of tributary estuaries around vary correspondingly. Water dilution and self-purification ability faded, water environmental capacity declined, and then it influences the water quality of tributary and the safety of drinking water around reservoir area. Studying hydrodynamic characteristics under the condition of impoundment and drainage in tributary estuaries, and proposing effective measures for improving hydrodynamic condition have a significant effect on improving the tributaries’ water quality in reservoir area and guaranteeing the safety of water supplies. Yulin River, a tributary of Three Gorges Reservoir, was chosen as a studying object, simulating estuaries’ variation of hydrodynamic characteristics during its impoundment and drainage period, furthermore analyzing evolution law of hydrodynamics. The results indicated that during the period of impoundment, the average velocity of the estuary surface was 0.026 m/s; the average velocity of the estuary bottom was 0.027 m/s. The bulk velocity was slow, influencing the diffusion of waste, which strongly needs intensive control on surface source and preventing harmful algae blooming due to risen temperature by storage of nutriment. During the period of drainage, the average velocity of the estuary surface was 0.21 m/s, however, the average velocity of the estuary bottom was 0.034 m/s. Although it possessed high surface velocity, there were no much differences in bottom velocity between impoundment period and drainage period, resulting in accumulation of nutritive salt and heavy mental in the bottom.
文章引用:龙明梅, 艾海男, 刘步云, 何强, 孙兴福, 李宏. 三峡蓄放条件下御临河口水动力特性研究[J]. 水资源研究, 2017, 6(4): 357-369. https://doi.org/10.12677/JWRR.2017.64043

参考文献

[1] 钟成华. 三峡库区水体富营养化研究[D]: [博士学位论文]. 成都: 四川大学, 2004. ZHONG Chenghua. Study on eutrophication of water body in Three Gorges Reservoir area. Chengdu: Sichuan University doctoral thesis, 2004. (in Chinese)
[2] 江春波, 李凯, 李苹, 等. 长江三峡库区污染混合区的有限元模拟[J]. 清华大学学报(自然科学版), 2004, 44(6): 808-811. JIANG Chunbo, LI Kai, LI Ping, et al. Finite element simulation of pollution mixing zone in Three Gorges Reservoir area of Yangtze River. Journal of Tsinghua University (Science and Technology), 2004, 44(6): 808-811. (in Chinese)
[3] 吕平毓, 米武娟. 三峡水库蓄水前后重庆段整体水质变化分析[J]. 人民长江 2011, 42(7): 28-32. LV Pinyu, MI Wujuan. Analysis of water quality change of Chongqing section before and after impoundment of Three Gorges Reservoir. Yangtze River, 2011, 42(7): 28-32. (in Chinese)
[4] 尹真真, 邓春光, 徐静. 三峡水库二期蓄水后次级河流回水河段富营养化调查[J]. 安徽农业科学, 2006, 34(19): 4998-5000. YIN Zhenzhen, DENG Chunguang, XU Jin. Investigation on eutrophication in backwater section of secondary river after impoundment of two Gorges Reservoir. Journal of Anhui Agricultural Sciences, 2006, 34(19): 4998-5000. (in Chinese)
[5] 田园. 基于MapGIS平台的水动力数值模拟研究[D]: [硕士学位论文]. 天津: 天津大学, 2007. TIAN Yuan. Hydrodynamic numerical simulation based on MapGIS platform. Tianjin: Tianjin University, 2007. (in Chinese)
[6] 梁云, 殷峻暹, 祝雪萍. MIKE21水动力学模型在洪泽湖水位模拟中的应用[J]. 水电能源科学, 2013, 31(1): 135-137. LIANG Yun, YIN Junni, ZHU Xueping. Application of MIKE21 hydrodynamic model in the simulation of water level in Hongze Lake. Water Resources and Power. 2013, 31(1): 135-137. (in Chinese)
[7] LI, Y. P., TANG, C. Y., WANG, C., et al. Improved Yangtze River diversions: Are they helping to solve algal bloom problem in Lake Taihu, China. Ecological Engineering, 51(2013): 104-106.
https://doi.org/10.1016/j.ecoleng.2012.12.077
[8] WOOL, T. A., DAVIE, S. R., RODRIGUEZ, H. N. Development of three-dimensional hydrodynamic and water quality models to support total maximum daily load decision process for the Neuse River estuary, North Carolina. Journal of Water Resources Planning and Management, 2003(129): 295-306.
https://doi.org/10.1061/(ASCE)0733-9496(2003)129:4(295)
[9] HAMRICK, J. M. Users manual for the environment al fluid dynamic computer code. Virginia: The College of William and Mary, Virginia Institute of Marine Science, 1996.
[10] 王翠, 孙英兰, 张学庆. 基于EFDC 模型的胶州湾三维潮流数值模拟[J]. 中国海洋大学学报, 2008, 38(5): 833-840. WANG Cui, SUN Yinglan, ZHANG Xueqing. Numerical simulation of three dimensional tidal current in Jiaozhou Bay based on EFDC model. Periodical of Ocean University of China, 2008, 38(5): 833-840. (in Chinese)
[11] 范翻平. 基于Delft3D模型的鄱阳湖水动力模拟研究[D]: [硕士学位论文]. 南昌: 江西师范大学, 2010. FAN Fanping. Study on hydrodynamic simulation of Poyang Lake based on Delft3D model. Nanchang: Jiangxi Normal University, 2010. (in Chinese)
[12] 李榕. 关于影响曼宁粗糙系数n值的水力因素探讨[J]. 水利学报, 1989(12): 62-66. LI Rong. Discussion on hydraulic factors influencing Manning's roughness coefficient n value. Journal of Hydraulic Engineering, 1989(12): 62-66. (in Chinese)
[13] 任华堂, 于良, 夏建新, 等. 黄河内蒙古段水污染事故应急预警模型研究[J]. 应用基础与工程科学学报, 2012(S1): 67-76. REN Huatang, YU Liang, XIA Jianxin, et al. Study on the early warning model of water pollution accident in Inner Mongolia section of the Yellow River. Journal of Basic Science and Engineering, 2012(S1): 67-76. (in Chinese)
[14] 陈景秋, 赵万星, 季振刚. 重庆两江汇流水动力模型[J]. 水动力学研究与进展(A辑). 2005(S1): 829-835. CHEN Jinqiu, ZHAO Wanxin, JI Zhengang. Dynamic model of two rivers in Chongqing. Journal of Hydrodynamics, 2005(S1): 829-835. (in Chinese)
[15] 苗晓雨. 基于EFDC的尹府水库水质数值模拟及预测[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2012. MIAO Xiaoyu. Numerical simulation and prediction of water quality based on EFDC. Qingdao: Ocean University of China, 2012. (in Chinese)
[16] JI, Z.-G., MORTON, M. R., HAMRICK, J. M. Wetting and drying simulation of estuarine processes. Estuarine, Coastal and Shelf Science, 2001, 53, 683-700.
https://doi.org/10.1006/ecss.2001.0818
[17] GONG, W. P., SHEN, J., HONG, B. The influence of wind on the water age in the tidal Rappahannock River. Marine Environmental Research, 2009, 68, 203-216.
[18] 刘夏明, 李俊清, 豆小敏, 等. EFDC模型在河口水环境模拟中的应用及进展[J]. 环境科学与技术, 2011(S1): 136-140. LIU Xiamin, LI Junqin, DOU Xiaomin, et al. Application and development of EFDC model in the simulation of water environment. Environmental Science and Technology, 2011(S1): 136-140. (in Chinese)
[19] 陈稚聪, 黑鹏飞, 丁翔. 丁坝回流区水流紊动强度试验[J]. 清华大学学报(自然科学版), 2008, 48(12): 2053-2056. CHEN Yacong, HEI Pengfei, DIN Xiang. Experimental study on turbulence intensity of flow field in groin recirculation zone. Journal of Tsinghua University (Science and Technology), 2008, 48(12): 2053-2056. (in Chinese)
[20] 李绍武, 郑建军. 回流区水流运动二维数值模拟[J]. 港工技术, 2006(4): 4-10. LI Shaowu, ZHEN Jianjun. Two dimensional numerical simulation of flow field in recirculation zone. Port Engineering Tech-nology, 2006(4): 4-10. (in Chinese)