星载微波数据在热带气旋监测中的应用
Analysis on the Function of Satellite-Based Microwave Data in Tropical Cyclone Monitoring
DOI: 10.12677/CCRL.2017.63022, PDF, HTML, XML, 下载: 1,761  浏览: 2,821  国家科技经费支持
作者: 何杰颖*, 张升伟, 刘 浩:中国科学院国家空间科学中心,中国科学院微波遥感技术重点实验室,北京;郭 杨:国家卫星气象中心,北京
关键词: 微波数据热带气旋微波湿温探测仪NCEP/WRF移动路径Microwave Data Tropical Cyclone Microwave Humidity and Temperature Sounder NCEP/WRF Moving Path
摘要: 基于国内外星载微波数据在热带气旋监测中的发展,本文利用风云三号微波湿温探测仪(FY-3C MWHTS)在轨观测数据,对2016年典型热带气旋莎莉嘉发生过程的大气三维温湿度垂直分布、降水分布以及热带气旋移动路径进行分析,并采用NCEP再分析资料和WRF数值模式对该时空区域数据进行高时空分辨率数值模拟,分析250 hPa附近大气环流场对台风内部动力和移动路径进行分析,结合星载微波数据,联合预测台风路径,并与实测台风移动路径进行比较。结果证明,结合数值模拟数据和星载微波实测数据,能够有效预测降雨区域和移动路径,为目前热带气旋业务预报提供有效的补充资料。
Abstract: Based on the development of the satellite-based microwave data in the monitoring of tropical cyclones at home and abroad, this paper analyzes the distribution of temperature, humidity, precipitation and movement path when cyclone named Sarika (No. 201621) happened. Also, using the NCEP reanalysis data and WRF numerical model in the same domain to generate the atmospheric data with higher temporal and spatial resolution, and analyze the internal dynamic and the moving path of the cyclone in the pressure level of 250 hpa. Combining with simulation and observation of satellite-based microwave payloads, the prediction of path is compared with the actual path by monitoring. The results shows that satellite-based microwave data as a valid complement can be used in the business forecasting system in the facet of precipitation and moving path of tropical cyclone.
文章引用:何杰颖, 郭杨, 张升伟, 刘浩. 星载微波数据在热带气旋监测中的应用[J]. 气候变化研究快报, 2017, 6(3): 202-214. https://doi.org/10.12677/CCRL.2017.63022

参考文献

[1] Dvorak, V.F. (1984) Tropical Cyclone Intensity Analysis Using Satellite Data. NOAA Technical Report NESDIS, New York.
[2] Veldon, C.S., Olander, T.L. and Zehr, R.M. (1998) Development of an Objective Scheme to Estimate Tropical Cyclone Intensity from Digital Geostationary Satellite Infrared Imagery. Weather and Forecasting, 13, 172-186.
https://doi.org/10.1175/1520-0434(1998)013<0172:DOAOST>2.0.CO;2
[3] Olander, T.L. and Velden, C.S. (2007) The Advanced Dvorak Technique: Continued Development of an Objective Scheme to Estimate Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery. Weather & Forecasting, 22, 287.
https://doi.org/10.1175/WAF975.1
[4] 牛晓蕾, 李万彪, 朱元竞. TRMM资料分析热带气旋的降水与水汽、潜热的关系[J]. 热带气象学报, 2006(2): 113-120.
[5] Veldon, C.S., Goodman, B.M. and Merrill, R.T. (1991) North Pacific Tropical Cyclone Intensity Estimation from NOAA Polar-Orbiting Satellite Microwave Data. Monthly weather Review, 119, 159-168.
https://doi.org/10.1175/1520-0493(1991)119<0159:WNPTCI>2.0.CO;2
[6] Kidder, S.Q., Goldberg, M.D., Zehr, R.M., et al. (2000) Satellite Analysis of Tropical Cyclone Using the Advanced Microwave Sounding Unit (AMSU). Bulletin of the American Meteorological Society, 81, 1241-1259.
https://doi.org/10.1175/1520-0477(2000)081<1241:SAOTCU>2.3.CO;2
[7] Spencer, R.W. and Braswell, W.D. (2001) Atlantic Tropical Cyclone Monitoring with AMSU-A: Estimation of Maximum Sustained Wind Speeds. Monthly Weather Review, 129, 1518-1532.
https://doi.org/10.1175/1520-0493(2001)129<1518:ATCMWA>2.0.CO;2
[8] Brueske, K.F. and Velden, C.S. (2003) Satellite-Based Tropical Cyclone Intensity Estimation Using the NOAA-KLM Series Advanced Microwave Sounding Unit (AMSU). Monthly Weather Review, 131, 687-697.
https://doi.org/10.1175/1520-0493(2003)131<0687:SBTCIE>2.0.CO;2
[9] 邱红, 方翔, 谷松岩, 张文建, 朱元竞. 利用AMSU分析热带气旋结构特征[J]. 应用气象学报, 2007(6): 810-820.
[10] 刘喆, 朱元竞, 李万彪, 韩志刚, 张凤英. 气象卫星资料在估测热带气旋强度方向的应用进展[J]. 热带气象学报, 2008(5): 550-556.
[11] 何杰颖, 张升伟. FY-3A星MWHS反演中纬度和热带大气水汽[J]. 遥感学报, 2012, 16(3): 562-578.
[12] 郭杨, 卢乃锰, 谷松岩, 何杰颖, 王振占. FY-3C微波湿温探测仪辐射测量特性[J]. 应用气象学报, 2014(4): 436-444.
[13] He, J.Y., Zhang S.W. and Wang, Z.Z. (2015) Advanced Microwave Atmospheric Sounder (AMAS) Channel Specifications and T/V Calibration Results on FY-3C Satellite. IEEE Transactions on Geosciences and Remote Sensing, 53, 1481-493.
[14] Rosenkranz, P.W. (2003) Rapid Radioactive Transfer Model for AMSU/HSB Channels. Geo-Science and Remote Sensing. IEEE Transactions on Geo-Science and Remote Sensing, 41, 362-368.
https://doi.org/10.1109/TGRS.2002.808323
[15] 雷小途. 热带气旋的结构对其移动影响的动力分析海洋学报[J]. 2002(1): 35-46.
[16] 王新, 方翔, 刘年庆. 热带气旋垂直倾斜度估算及在强度分析中的应用[J]. 应用气象学报, 2013(6): 714-722.
[17] 张淼. 基于风云三号微波成像仪估计热带气旋强度[C]//中国气象学会. 第30届中国气象学会年会论文集. 南京: 气象学会出版社, 2013:11.
[18] 赵付竹, 郑艳, 李勋. 强台风“纳沙”的路径和降水诊断分析[J]. 气象研究与应用, 2013(1): 17-20.
[19] 刘喆, 白洁, 邱红, 张文军. 利用FY-3星载微波资料对热带气旋云系和暖核特征的分析[J]. 气象科学, 2012(5): 534-541.
[20] He, J. and Zhang, S. (2016) Regional Profiles and Precipitation Retrievals and Analysis Using FY-3C MWHTS. Atmospheric & Climate Sciences, 6, 273-284.
https://doi.org/10.4236/acs.2016.62023
[21] 梁洁仪, 贺海晏. 登陆台风路径与降水分析[J]. 中山大学研究生学刊(自然科学、医学版), 2006(1): 76-81.
[22] 周光益, 邱坚锐, 邱治军, 吴仲民. 不同路径台风或热带风暴对海南尖峰岭强降水的影响[J]. 生态学报, 2004(12): 2723-2727.
[23] 韦显智. 台风路径与降水[J]. 广西气象, 1988(2): 11-13.