Eu3+/Tb3+掺杂CaSrAl2SiO7纳米粒子的制备及发光性能研究
Synthesis and Luminescence Properties of Eu3+/Tb3+:CaSrAl2SiO7 Nanoparticles
DOI: 10.12677/CMP.2017.63007, PDF, HTML, XML,  被引量 下载: 1,689  浏览: 3,371  科研立项经费支持
作者: 羊富贵*, 乔亮:福建江夏学院,数理教研部,福建 福州;任海科, 颜峰坡:福建江夏学院,电子信息科学学院,福建 福州
关键词: 发光材料硅铝酸盐纳米颗粒Luminescence Material Aluminosilicate Nanoparticle
摘要: 采用溶胶–凝胶–高温固相合成法制备了3% Eu3+/x% Tb3+:CaSrAl2SiO7(x = 1, 2, 5, 7)纳米粉体。采用X射线衍射仪、扫描电子显微镜和分光光度计对样品性能进行测试与表征。结果表明,颗粒尺寸约为300~700 nm;在255 nm波长激发下,主要发射峰位于590 nm,613 nm分别对应Eu3+离子的5D07F15D07F2跃迁;同时观察到545 nm,586 nm发射峰,分别对应Tb3+5D47F5, 5D47F4跃迁。随着Tb3+掺杂浓度增加,Eu3+离子的黄光和红光强度逐渐增强,表明Tb3+与Eu3+之间存在能量传递。
Abstract: The 3% Eu3+/x% Tb3+:CaSrAl2SiO7 (x = 1, 2, 5, 7)nanoparticles were synthesized by Sol-Gel-solid re-action. The structure, photoluminescence spectra and quantum efficiency were investigated. Result indicates the scale is near 300~700 nm. Excited with 255nm, we observed two emission peaks at 590 nm, 613 nm, corresponding to the transitions of (Eu3+)5D07F1, 5D07F2. And two peaks at 545 nm and 586 nm, corresponding to the transitions of (Tb3+) 5D47F5, 5D47F4. With the increasing concentration of Tb3+, the emission intensities of yellow and red light of Eu3+ enhance together, which shows that the energy transfers form Tb3+ to Eu3+.
文章引用:羊富贵, 乔亮, 任海科, 颜峰坡. Eu3+/Tb3+掺杂CaSrAl2SiO7纳米粒子的制备及发光性能研究[J]. 凝聚态物理学进展, 2017, 6(3): 51-57. https://doi.org/10.12677/CMP.2017.63007

参考文献

[1] Lee, S.P., Huang, C.H., Chan, T.S. and Chen, T.M. (2014) New Ce3+-Activated Thiosilicate Phosphor for LED Lighting Synthesis, Luminescence Studies, and Applications. ACS Applied Materials & Interfaces, 6, 7260-7267.
https://doi.org/10.1021/am500483j
[2] Liu, H., Luo, Y., Mao, Z., Liao, L. and Xia, Z. (2014) A Novel Single-Composition Trichromatic White-Emitting Sr3.5Y6.5O2(PO4)1.5(SiO4)4.5:Ce3+/Tb3+/Mn2+ Phosphor: Synthesis, Luminescent Properties and Applications for White LEDs. Journal of Materials Chemistry C, 2, 1619-1627.
https://doi.org/10.1039/c3tc32003k
[3] Lü, W., Jiao, M.M., Shao, B.Q., Zhao, L.F. and You, H.P. (2015) Enhancing Photoluminescence Performance of SrSi2O2N2:Eu2+ Phosphors by Re (Re = La, Gd, Y, Dy, Lu, Sc) Substitution and Its Thermal Quenching Behavior Investigation. Inorganic Chemistry, 54, 9060-9065.
https://doi.org/10.1021/acs.inorgchem.5b01402
[4] Kottaisamy, M., Rao, R.P., Avudaithai, M., Srinivasan, L.K., Sundaram, V. and Jagannathan, R. (1995) On the Formation of Flux GrownY2O2S:Eu3+ Red Phosphor. Journal of the Electrochemical Society, 142, 3205-3209.
[5] He, X. and Zhu, Y. (2008) Improvement of Morphology and Lumines-cence of CaS:Eu2+ Red-Emitting Phosphor Particles via Carbon-Containing Additive Strategy. Journal of Materials Science, 43, 1515-1519.
https://doi.org/10.1007/s10853-007-2359-2
[6] Schmiechen, S., Schneider, H., Wagatha, P., Hecht, C., Schmidt, P.J. and Schnick, W. (2014) Toward New Phosphors for Application in Illumination-Grade White Pc-LEDs:the Nitridomagnesosilicates Ca[Mg3SiN4]:Ce3+, Sr[Mg3SiN4]:Eu2+, and Eu [Mg3SiN4]. Chemistry of Materials, 26, 2712-2719.
https://doi.org/10.1021/cm500610v
[7] Tsai, Y.T., Chiang, C.Y., Zhou, W., Lee, J.F., Sheu, H.S. and Liu, R.S. (2015) Structural Ordering and Charge Variation Induced by Cation Substitution in (Sr, Ca)AlSiN3:Eu Phosphor. Journal of the American Chemical Society, 137, 8936-8939.
[8] Schmiechen, S., Strobel, P., Hecht, C., Reith, T., Siegert, M., Schmidt, P.J., Huppertz, P., Wiechert, D. and Schnick, W. (2015) Nitridomagnesosilicate Ba[Mg3SiN4]:Eu2+ and Structure-Property Relations of Similar Narrow-Band Red Nitride Phosphors. Chemistry of Materials, 27, 1780-1785.
https://doi.org/10.1021/cm504604d
[9] Pust, P.V., Weiler, C., Hecht, A., Tücks, A.S., Wochnik, A.K., Henß, D., Wiechert, C., Scheu, P.J. and Schmidt, W. (2014) Narrow-Band Red-Emitting Sr[LiAl3N4]:Eu2+ as a Next-Generation LED-Phosphor Material. Nature Materials, 13, 891-896. https://doi.org/10.1038/nmat4012
[10] Yeh, C., Chen, W., Liu, R.S., Hu, S.F., Sheu, H., Chen, J. and Hintzen, H.T. (2012) Origin of Thermal Degradation of Sr2−xSi5N8:Eux Phosphors in Air for Light-Emitting Diodes. Journal of the American Chemical Society, 134, 14108- 14117.
[11] Deng, D.G., Yu, H., Li, Y.Q., Hua, Y.J., Jia, G.H., Zhao, S.L., Wang, H.P., Huang, L.H., Li, Y.Y., Li, C.X. and Xu, S.Q. (2013) Ca4(PO4)2O: Eu2+ Red-Emitting Phosphor for Solid-State Lighting: Structure, Luminescent Properties and White Light Emitting Diode Application. Journal of Materials Chemis-try C, 1, 3194-3199.
https://doi.org/10.1039/c3tc30148f
[12] Joshi, B. and Lee, S.W. (2015) Luminescence Properties of Eu2+, Gd3+ and Pr3+ Doped Translucent Sialon Phosphors. Journal of Rare Earths, 33, 1142.
https://doi.org/10.1016/S1002-0721(14)60538-X
[13] Jiao, H.Y. and Wang, Y. (2012) A Potential Red-Emitting Phosphor CaSrAl2SiO7:Eu3+ for Near-Ultraviolet Light-Emitting Diodes. Physica B: Condensed Matter, 407, 2729-2733.
https://doi.org/10.1016/j.physb.2012.04.001
[14] Zhang, L., Jiang, D., Xia, J., Li, C., Zhang, N. and Li, Q. (2014) Novel Luminescent Yttrium Oxide Nanosheets Doped with Eu3+ and Tb3+. RSC Advances, 4, 17648-17652.
https://doi.org/10.1039/c4ra01881h
[15] Behrendt, M., Mahlik, S., Szczodrowski, K., Kuklin´ski, B. and Grinberg, M. (2016) Spectroscopic Properties and Location of the Tb3+ and Eu3+ Energy Levels in Y2O2S under High Hydrostatic Pressure. Physical Chemistry Chemical Physics, 18, 22266-22275.
https://doi.org/10.1039/C6CP03075K
[16] Ohkubo, K. and Shigeta, T. (1999) Absolute Fluorescent Quantum Efficiency of NBS Phosphor Standard Samples. Journal of the Illuminating Engineering Institute of Japan, 83, 87-93.