水刺入液态金属水力学数值模拟
Numerical Simulation of Hydraulic Behavior in Coolant Jet-Melt Interaction
DOI: 10.12677/APP.2017.78028, PDF, HTML, XML, 下载: 1,414  浏览: 2,422  国家自然科学基金支持
作者: 周 源*, 陈竞覃, 汪杨乐:四川大学物理科学与技术学院,四川 成都
关键词: 严重事故熔融物与冷却剂相互作用数值模拟射流最终深度Severe Accident Fuel Coolant Interaction Numerical Simulation Final Depth
摘要: 冷却剂刺入熔融金属内部是冷却剂和熔融金属相互作用现象中一种结构形式,受射流速度、密度比等因素影响。本文基于FLUENT15.0软件,采用流体体积法(VOF)对水刺入液态金属水力学现象进行了数值模拟,计算结果与日本Park实验结果吻合,并开展了水刺入金属水力学现象参数影响研究,结果表明射流最终穿透深度与射流速度和密度比相关,且基本不受液态金属粘性系数影响,结果有助于了解冷却剂刺入熔融金属过程的最终穿透深度波动机理和参数影响规律。
Abstract: Pouring coolant into molten material is one of the patterns in fuel coolant interaction which is affected by jet velocity and density ratio. The hydraulic behaviors of coolant jet-melt interaction are simulated by VOF method based on FLUENT15.0. The simulation results agree with Park’s experiments well. The parameter effects on hydraulic behaviors are discussed. As jet velocity and density ratio increase, the final depth increases. The conclusions are helpful to understand the parameter influence and the fluctuation mechanism of final penetration depth.
文章引用:周源, 陈竞覃, 汪杨乐. 水刺入液态金属水力学数值模拟[J]. 应用物理, 2017, 7(8): 213-222. https://doi.org/10.12677/APP.2017.78028

参考文献

[1] Fletcher, D.F. (1995) Steam Explosion Triggering: A Review of Theoretical and Experimental Investigations. Nuclear Engineering and Design, 155, 27-36.
[2] Sibamoto, Y., Kukita, Y. and Nakamura, H. (2012) Small-Scale Experiment on Subcooled Water Jet Injection into Molten Alloy by Using Fluid Temperature-Phase Coupled Measurement and Visualization. Journal of Nuclear Science and Technology, 44, 1059-1069.
https://doi.org/10.1080/18811248.2007.9711347
[3] Park, H.S., Yamano, N. and Maruyama, Y. (1998) Study on Energetic Fuel-Coolant Interaction in the Coolant Injection Mode of Contact. Proceedings of the 6th International Conference on Nuclear Engineering (ICONE-6), San Diego, 10-15 May 1998, Article ID: 16813.
[4] Songbai, C., Ken-ichi, M. and Mikio, I. (2014) An Experimental Study on Local Fuel-Coolant Interactions by Delivering Water into a Simulated Molten Fuel Pool. Nuclear Engineering and Design, 275, 133-141.
https://doi.org/10.1016/j.nucengdes.2014.05.003
[5] Songbai, C., Ken-ichi, M. and Mikio, I. (2015) The Effect of Coolant Quantity on Local Fuel-Coolant Interactions in a Molten Pool. Annals of Nuclear Energy, 75, 20-25.
https://doi.org/10.1016/j.anucene.2014.07.042
[6] Sachin, T., Louis, M. and Weimin, M. (2015) A Numerical Simulation of Jet Breakup in Melt Coolant Interactions. Annals of Nuclear Energy, 80, 467-475.
https://doi.org/10.1016/j.anucene.2015.02.038
[7] Hirokazu, I., Seiichi, K. and Yoshiaki, O. (2001) Numerical Analysis of Jet Injection Behavior for Fuel Coolant Interaction Using Particle Method. Journal of Nuclear Science and Technology, 38, 174-182.
https://doi.org/10.1080/18811248.2001.9715019
[8] Yuan, Z., Mingjun, Z. and Xing, F. (2016) A Numerical Simulation of water jet injection Behavior in Fuel-Coolant Interaction. Journal of Nuclear Science and Technology, 54, 174-181.
[9] 沈正祥, 李金柱, 吕中杰, 黄风雷. 水动力作用下低速射流碎化的数值模拟[J]. 计算力学学报, 2013, 30(2): 308- 312.